检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨志芳[1] 颜磊 YANG Zhifang;YAN Lei(School of Electrical and Information Engineering,Wuhan Institute of Technology,Wuhan 430205,China)
机构地区:[1]武汉工程大学电气信息学院,湖北武汉430205
出 处:《武汉工程大学学报》2021年第2期223-226,231,共5页Journal of Wuhan Institute of Technology
摘 要:针对传统的加速稳健特征(SURF)算法在图像拼接过程中计算复杂度高以及匹配精度不佳等问题,提出一种基于SURF的改进算法,首先基于加速分割检测特征(FAST)算法快速提取图像特征点,利用SURF算法对提取到的特征点进行特征描述,然后通过改进的k-d树最近邻查找算法(BBF)寻找图像间的匹配点,与双向匹配的自适应阈值配准法相结合进行图像的匹配,利用改进的随机抽样一致性(RANSAC)算法对提取的特征点进行误匹配剔除,最后使用渐入渐出的加权融合算法对图像进行拼接。实验表明与传统的SURF+RANSAC算法相比,本文算法的图像拼接速度快,匹配精度更高。Aiming at the problem of high computational complexity and poor registration accuracy image mosaic,a new image mosaic method based on improved speed up robust feature(SURF)was proposed.Firstly,feature points were extracted by the accelerated segment test algorithm and described based on the SURF descriptor.Secondly,the matching points between images were searched by using the improved k-d tree nearest neighbor search algorithm(best bin first).Then the adaptive threshold registration algorithm of bidirectional matching strategy was used for image matching.Finally,the random sample consensus(RANSAC)algorithm was used to eliminate false matching points,After that,the image mosaic was conducted based on the incremental weighting fusion algorithm.Experimental results show that the proposed method is more efficient and accurate than traditional image mosaic methods based on SURF and RANSAC.
关 键 词:图像拼接 SURF算法 FAST算法 BBF算法 RANSAC算法
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117