检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吉经纬 李琳[1] 于歌[3] 汪斌[1] 任伟[1] 吕德胜[1] JI Jing-wei;LI Lin;YU Ge;WANG Bin;REN Wei;LV De-sheng(Key Laboratory of Quantum Optics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Key Laboratory of Space Utilization,Technology and Engineering Center for Space Utilization,Chinese Academy of Sciences,Beijing 100094,China)
机构地区:[1]中国科学院上海光学精密机械研究所量子光学重点实验室,上海201800 [2]中国科学院大学材料与光电研究中心,北京100049 [3]中国科学院空间应用工程与技术中心中国科学院太空应用重点实验室,北京100094
出 处:《测控技术》2021年第4期70-75,共6页Measurement & Control Technology
基 金:国家自然科学基金(11704391);载人航天领域预先研究项目(18051030301)。
摘 要:目前空间站各科学实验载荷地面检测系统不通用,同时在轨开展实验可调参数众多,且天地数据交互存在延时,使得在轨实验耗时长。为解决上述问题,提出了一种基于Qt、SQLite3、Python的通用地面检测系统设计。采用了软件模块化思想,通过修改配置文件满足不同科学实验载荷的地面测试需求。同时该设计基于人工智能技术,通过遥科学手段与在轨载荷实时通信,将载荷的科学实验当作黑盒函数,利用遥科学回传的实验结果来构建目标函数。运用神经网络算法拟合科学实验、SciPy调用LBFGS-B预测参数的方法优化载荷的在轨实验。目前该设计已在空间站超冷原子实验和空间站高精度时频柜冷原子微波钟实验设备的地面调试中开展应用,预计载荷在轨开展实验后,能将在轨调试参数的时间从数个月缩短至几周内完成。In order to solve the problems that the ground testing systems for scientific payloads of the space station are not universal,and there are too much time consuming in the experimental process due to a large number of adjustable parameters and time delay of data interaction in the experiments,a design of a universal ground testing system based on Qt,SQLite3 and Python is proposed.The idea of software modularization is adopted,and the configuration file is modified to meet the ground test requirements of different scientific experimental loads.Based on artificial intelligence technology,real time communication with the on-orbit payload is realized through telescience.The scientific experiment of the payload is regraded as a black box function,and the objective function is constructed by the experimental results of the telescience return.The neural network algorithm fitting scientific experiments and SciPy calling the L-BFGS-B prediction parameter methods are used to optimize the on-orbit experiments.The design has been applied to the ground debugging of two space station loads,namely the super-cold atomic experiment cabinet and the high-precision time-frequency cabinet cold atomic microwave clock.It is expected that after the load in orbit experiment,the on orbit debugging time can be shortened from several months to several weeks.
关 键 词:测试计量 通用地面检测系统 人工智能 空间站 遥科学
分 类 号:V556[航空宇航科学与技术—人机与环境工程] V557
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.252.84