基于脉冲微分方程研究具有竞争关系的捕食系统的持久性  

The Permanence of the Predator-prey System is Studied Based on Impulsive Differential Equations

在线阅读下载全文

作  者:胡杰 邓林强 李富忠 柴秀林 郭嘉栋 HU Jie;DENG Lin-qiang;LI Fu-zhong;CHAI Xiu-lin;GUO Jia-dong(School of Software,Shanxi Agricultural University,Taigu 030801,China;School of Software,Taiyuan University of Technology,Taiyuan 030024,China)

机构地区:[1]山西农业大学软件学院,山西太谷030801 [2]太原理工大学软件学院,山西太原030024

出  处:《数学的实践与认识》2021年第7期268-273,共6页Mathematics in Practice and Theory

基  金:山西农业大学科技创新基金项目(2017005)。

摘  要:基于脉冲微分方程理论,考虑到在现实生活中,种群内部和种群之间都存在相互竞争,故本文在捕食与被捕食系统中引入竞争关系,建立了具有Hassell-Varley功能性反应的一类食饵与一类捕食者系统.利用比较定理得到此系统的有界性和生物学家比较关注的系统持久性的充分条件,即定理3.1和定理3.2.最后本文对得到的结论进行了阐释,并给出了相应的生物学意义.Based on the theory of impulsive differential equation,due to the effect of pesticide spraying on natural enemies,considering two different kinds of impulse processes,using Hassell-Varley functional response,a predator-prey system was established in this paper.We employ the comparison theorem to get the boundedness and the sufficient condition for the permanence of predator-prey system,namely theorem 3.1 and Theorem 3.2.Finally,this paper explains the conclusion and gives the corresponding biological significance.This work provides reliable technical support for pest control in the real environment.Moreover,the method of theorem 3.2 has a wide range of applicability,and similar methods can be used to extend Hassell-Varley functional responses to other specific functional responses,such as Beddington-DeAngelies,Watt-type,Square-Root functional response and so on.The system can be used to control pests and rodents in farmland.It can also be used to protect endangered species so that predators and prey can live together to maintain ecological balance.

关 键 词:Hassell-Varley功能性反应 竞争 持久性 捕食与被捕食系统 脉冲 

分 类 号:O175[理学—数学] Q141[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象