检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张力 黄丹平 廖世鹏[2] 于少东 叶建秋 王鑫 董娜 Zhang Li;Huang Danping;Liao Shipeng;Yu Shaodong;Ye Jianqiu;Wang Xin;Dong Na(School of Mechanical Engineering,Sichuan University of Science&Engineering,Yibin,Sichuan 644000,China;Chengdu Institute of Computer Application,Chinese Academy of Sciences,Chengdu,Sichuan 610041,China;School of Mechanical Engineering,Sichuan University,Chengdu,Sichuan 610065,China)
机构地区:[1]四川轻化工大学机械工程学院,四川宜宾644000 [2]中国科学院成都计算机应用研究所,四川成都610041 [3]四川大学机械工程学院,四川成都610065
出 处:《激光与光电子学进展》2021年第4期236-245,共10页Laser & Optoelectronics Progress
基 金:国家自然科学基金青年基金(51704199,51303115);四川省科技厅重点研发项目(2019YFG0167)。
摘 要:针对传统图像处理算法难以快速、准确识别轮对踏面缺陷的问题,提出一种采用双深度神经网络对轮对踏面缺陷进行检测的算法。该双网络分为踏面提取网络与缺陷识别网络。根据踏面为大目标的特点,分析与测试SSD网络,并用该网络提取轮对图像中的踏面区域。为提高踏面缺陷识别效率,在提取出踏面图像后,针对踏面缺陷属于中、小目标的特点,对YOLOv3网络结构进行优化得到M-YOLOv3。实验测试表明:提取踏面区域时,SSD算法的精度均值(AP)最高,达99.8%;识别踏面缺陷时,M-YOLOv3的AP达89.9%,相较于原始YOLOv3,单张图像计算耗时减少7.1%,同时AP仅有0.6%的损耗。结果表明,所提算法具有较高的检测准确率。It is difficult to quickly and accurately identify wheelset tread defects using traditional image processing algorithms.We propose an algorithm to accomplish this using a dual deep neural network.The dual network is divided into a tread-extraction network and a defect-identification network.Based on the characteristics of the treads as a big target,we analyze and test the SSD network,and apply this network to extract the tread area from wheelset images.To improve the efficiency of tread defect recognition,after the tread image is extracted,we optimize the YOLOv3 network structure to obtain M-YOLOv3 for the characteristics of medium and small tread defect targets.The experimental results show that when extracting tread areas,the average precision(AP)of the SSD algorithm is the highest(99.8%).When identifying tread defects,the AP of the M-YOLOv3 network reaches 89.9%.Compared with the original YOLOv3,the image computing time of the M-YOLOv3 network is reduced by 7.1%,with the AP showing only a 0.6%loss.The results demonstrate the proposed algorithm’s high detection accuracy.
关 键 词:图像处理 轮对踏面 缺陷检测 深度学习 SSD网络 YOLOv3网络
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15