检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程德强 王雨晨 寇旗旗 付新竹 陈亮亮 赵凯 Cheng Deqiang;Wang Yuchen;Kou Qiqi;Fu Xinzhu;Chen Liangliang;Zhao Kai(School of Information&Control Engineering,China University of Mining&Technology,Xuzhou Jiangsu 221116,China;School of Computer Science&Technology,China University of Mining&Technology,Xuzhou Jiangsu 221116,China)
机构地区:[1]中国矿业大学信息与控制工程学院,江苏徐州221116 [2]中国矿业大学计算机科学与技术学院,江苏徐州221116
出 处:《计算机应用研究》2021年第5期1576-1580,共5页Application Research of Computers
基 金:国家重点研发计划资助项目(2018YFC0808302);国家自然科学基金资助项目(51774281)。
摘 要:精确煤矸分类及识别能力是煤矿智能煤矸分选机器人要解决的关键问题。在通过深度学习图像分类方法的检测煤矸石中,为克服当前残差网络计算量大、复杂度高以及信息丢失的问题,提出了基于改进深度残差网络的图像分类方法。并提出了一种新的损失函数soft-center loss,克服由于softmax分类器对特征的区分判别能力差以及易造成模型过度自信的问题。同时在图像预处理阶段利用CBDNet去噪网络,提高了井下图像的质量,进一步提升了煤矸分类的准确率。实验结果表明,基于改进深度残差网络分类模型相比于其他分类网络模型在井下图像分类准确率提高了4.12%,在公开数据集CIFAR-10准确率提高了1.5%。Accurate coal gangue classification and recognition capabilities are the key issues for intelligent coal gangue sorting robots to solve.In the detection of coal gangue by the deep learning image classification method,in order to overcome the problems of large computational complexity,high complexity and information loss of the current residual network,this paper proposed an image classification method based on improved deep residual network.It proposed a new loss function(soft-center loss)to overcome the problems of the softmax classifier’s poor ability to discriminate features and the possibility of overconfident models.At the same time,it used the CBDNet denoising network in the image preprocessing stage,which improved the quality of the underground images and further improves the accuracy of coal gangue classification.The experimental results show that compared with other classification network models,the accuracy rate of downhole image classification is improved by 4.12%,and the accuracy rate of public data set CIFAR-10 is increased by 1.5%.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171