检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:章联生[1,2] 金耀初 宋永端[2] ZHANG Lian-Sheng;JIN Yao-Chu;SONG Yong-Duan(Department of Mathematics and Physics,Beijing Institute of Petro-chemical Technology,Beijing 102617,China;School of Automation,Chongqing University,Chongqing 400044,China;Department of Computer Science,University of Surrey,Guildford GU27XH,UK)
机构地区:[1]北京石油化工学院数理系,中国北京102617 [2]重庆大学自动化学院,中国重庆400044 [3]萨里大学计算科学系,英国吉尔福德GU27XH
出 处:《自动化学报》2021年第4期765-779,共15页Acta Automatica Sinica
基 金:国家自然科学基金(61773081,61833013);北京市教委科技计划一般项目(KM201910017002)资助。
摘 要:忆阻器(Memristor)是一种无源的二端电子元件,同时也是一种纳米级元件,具有低能耗、高存储、小体积和非易失性等特点.作为一种新型的存储器件,忆阻器的研制,有望使计算机实现人脑特有的信息存储与信息处理一体化的功能,打破目前冯·诺伊曼(Von Neumann)计算机架构,为下一代计算机的研制提供一种全新的架构.鉴于忆阻器与生物神经元突触具有十分相似的功能,使忆阻器得以充当人工神经元的突触,建立起一种基于忆阻器的人工神经网络即忆阻神经网络.忆阻器的问世,为人工神经网络从电路上模拟人脑提供了可能,必将极大推动人工智能的发展.此外,忆阻神经网络的硬件实现及信号传递过程中,不可避免会出现时滞与分岔等现象,因此讨论含各种时滞,如离散、分布、泄漏时滞以及它们混合的时滞忆阻神经网络系统更具有现实意义.首先介绍了忆阻器的多种数学模型及其分类,建立了时滞忆阻神经网络(Delayed memristive neural networks,DMNN)的数学模型并阐述了其优点.然后提出了处理时滞忆阻神经网络动力学行为与控制问题的两种思路,详细综述了时滞忆阻神经网络系统的稳定性(镇定)、耗散性与无源性及其同步控制方面的内容,简述了其他方面的动力学行为与控制,并介绍了时滞忆阻神经网络动力学行为与控制研究新方向.最后,对所述问题进行了总结与展望.A memristor is a passive two-terminal electronic element and is also a nanometer element.Meanwhile,it has the features of low-energy consumption,high-storage,small-volume and non-volatility.As a new type of memory device,the memristor has similar characteristics as human brain synapses,which is expected to realize the integration of information storage and processing and breaks through the bottleneck of the current Von Neumann computer architecture,and provides new design architecture for the next generation of computer.Since the distinct characteristic is its memory function,which is very similar to the synapse of biological neurons.In recent years,some researchers have replaced the synaptic connections in neural networks by the memristor,and have established a type of neural networks based on the memristor.In a word,the advent of the memristor makes it possible for artificial neural networks to simulate the human brain,greatly promoting the development of artificial intelligence.In addition,time delays are inevitable in hardware implementations and signal transmission of the memristive neural networks.It is thus crucial to discuss the memristive neural networks with discrete,distributed,leakage and mixed delays.Firstly,this paper introduces numerous kinds of the memristor mathematic models and its classification.We model the delayed memristive neural networks(DMNN)and point out their advantages.Secondly,two ways to deal with the dynamical behaviors and control of the DMNN are provided.The stability(stabilization),passivity and dissipativity,synchronization for the DMNN are elaborated while other dynamical behaviors and control are sketched.New research directions of dynamical behaviors and control of the DMNN are also presented.Finally,a summary and outlook is given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.196.3