检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李志朋 赵长明 张海洋[1,2] 张子龙 吴璇[1,2] LI Zhipeng;ZHAO Changming;ZHANG Haiyang;ZHANG Zilong;WU Xuan(Key Laboratory of Optoelectronic Imaging Technology and System(Ministry of Education),Beijing 100081,China;School of Optoelectronics,Beijing Institute of Technology,Beijing 100081,China)
机构地区:[1]光电成像技术与系统教育部重点实验室,北京100081 [2]北京理工大学光电学院,北京100081
出 处:《应用光学》2021年第3期462-473,共12页Journal of Applied Optics
基 金:国防科工局重大基础科研项目。
摘 要:基于光电传感器的低慢小无人机探测系统能够快速准确地发现并识别无人机目标,但远距离非合作无人机目标在图像中像素比重过小,特征退化较明显,使识别率大大降低。图像超分辨技术能够从低分辨率目标图像区域中获得高分辨率图像并恢复更多的细节特征,现有超分辨技术很难在保证推理速度的前提下兼容图像的高低频特征,因此为了满足探测系统的需求,基于FSRCNN(fast super-resolution convolutional neural network)的特征提取与非线性映射网络结构并结合多尺度融合,提出一种包含4分支的轻量级多尺度融合超分辨率网络,能够在超分辨率图形中兼容高低频图像信息,且参数量较低,实时性高。经实验结果表明,该算法能够更加快速高效地重建出高分辨率的无人机轮廓与细节;在YOLOV3检测效果的实验中,该算法能够使无人机检测置信度平均提升6.72%,具备较高的实际应用价值。The low-speed and small unmanned aerial vehicle(UAV)detection system based on photoelectric sensors can quickly and accurately find and identify the UAV targets.However,the proportion of pixels in the images of long-distance non-cooperative UAV targets is too small,and the degradation of characteristics is obvious,which greatly reduce the recognition rate.The image super-resolution technology can obtain the highresolution images from low-resolution target image regions and restore the more detailed features.The existing super-resolution technology is difficult to be compatible with the high and low frequency characteristics of images while ensuring the inference speed.In order to meet the requirements of detection system,based on the feature extraction and nonlinear mapping network structure of fast super-resolution convolutional neural network(FSRCNN),and combined with the multi-scale fusion,a lightweight multi-scale fusion superresolution network with 4 branches was proposed,which could be compatible with the high and low frequency image information in super-resolution graphics and with low parameter quantity and high real-time performance.The experimental results show that the UAV contours and details with high resolution can be reconstructed more quickly and efficiently by this algorithm.In the experiment of YOLOV3 detection effect,the confidence degree of the UAV detection can be increased by 6.72%by this algorithm,which has high practical application values.
分 类 号:TN201[电子电信—物理电子学] TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90