检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯玉婷 腾先锋 郭玉堂 FENG Yu-ting;TENG Xian-feng;GUO Yu-tang(School of Computer Science and Technology, Hefei Normal University,Hefei 230601, China;School of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, China)
机构地区:[1]合肥师范学院计算机学院,合肥230601 [2]中国科学与技术大学计算机科学与技术学院,合肥230026
出 处:《重庆工商大学学报(自然科学版)》2021年第3期42-49,共8页Journal of Chongqing Technology and Business University:Natural Science Edition
基 金:光电探测科学与技术安徽高校联合重点实验室重点项目(2020GDTCZD02);安徽省质量工程数字研究重点项目(2019JYXM0933).
摘 要:针对当前Web不良图像内容监管和智能审核需求快速增加,人工和传统算法审核监管在规模、灵活性和响应时间上存在的不足,以及现有相关暴力图像数据样本的缺乏,提出一种基于深度模型迁移学习的Web图像内容审核方法。首先,收集自建暴力图像样本数据集,并对其进行数据增强和图像增强处理;其次,选择ImageNet数据集上训练完成的VGG16(Visual Geometry Group)和Resnet50(Residual Neural Network)两种典型的预训练深度神经网络模型进行迁移学习;最后,通过共享通用视觉特征、模型权重参数迁移以及微调,最终优化得到图像内容审核模型;通过对比验证实验研究,发现图像内容审核模型识别性能明显优于现有其他方法,正确率达到了95%以上,能满足实际应用需求。With the popularity of smart devices,the rapid development of Internet,social and multimedia software technologies,the accessibility and self-control of images have been greatly improved,and the demand for pornographic,violent and other undesirable image content supervision and intelligent review has rapidly increased.In view of the shortcomings of manual and traditional algorithm image content review and identification in scale,flexibility and response time,and the lack of existing related image data samples,a web image content review model based on deep transfer learning is proposed.According to the self-built violent image sample data set,two typical pre-trained deep neural network models,VGG16 and Resnet50,were selected for transfer learning,and the image content review model was finally optimized through fine-tuning of the weight parameters.Comparative experiments show that the recognition performance of the image content review model is significantly better than other existing methods,and the accuracy rate is more than 95%,which can meet the actual application needs.
关 键 词:特征提取 卷积神经网络 残差网络 迁移学习 图像审核
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.235.3