基于遗传算法的分支管路系统动力学优化设计  被引量:5

Dynamic optimization design of branch pipeline system based on genetic algorithm

在线阅读下载全文

作  者:曹银行 柳贡民[1] 张龙 CAO Yinhang;LIU Gongmin;ZHANG Long(College of Power and Energy Engineering,Harbin Engineering University,Harbin 150001,China;Second Military Delegate Room of Naval Equipment in Harbin Area,Harbin 150001,China)

机构地区:[1]哈尔滨工程大学动力与能源工程学院,哈尔滨150001 [2]海装驻哈尔滨地区第二军事代表室,哈尔滨150001

出  处:《振动与冲击》2021年第9期221-227,253,共8页Journal of Vibration and Shock

基  金:国家自然科学基金(51579051)。

摘  要:首先给出了传递矩阵法计算管路动力学问题的一般步骤和任意管路分支元件吸收传递矩阵法点传递矩阵的建立过程,实现了分支管路系统动力学问题的求解并通过与实验结果的对比证明其正确性;之后基于选定的分支管路设计基础模型,利用均匀设计原则选取计算样本并应用传递矩阵法对样本模型进行计算,最后利用二阶多项式响应面函数逼近回归模型并应用遗传算法寻优,对分支管路进行优化设计,通过吸收传递矩阵法、均匀设计原则和数学建模优化的方法,更好地节省计算成本和资源,对分支管路设计过程有一定的指导意义。Here,the general procedure of the transfer matrix method for pipeline dynamic calculation and the establishment process of the point transfer matrix for the absorption transfer matrix method of arbitrary pipeline branch element were derived firstly,solving dynamic problems of branched pipeline systems was realized,and their correctness was verified by comparing the theoretical calculation results with test ones.Then,based on the selected basic model of branched pipeline design,the uniform design principle was used to select calculation samples,and the transfer matrix method was used to do the sample model calculation.Finally,the second-order polynomial response surface function was used to approximate a regression model,and the genetic algorithm was used to optimize the branched pipeline design.It was shown that adopting the transfer matrix method,the uniform design principle and the mathematical modeling optimization method,calculation cost and resources can be better saved;the study results have a certain guiding significance for branched pipeline design process.

关 键 词:分支管路系统 吸收传递矩阵法 遗传算法 动力学设计 

分 类 号:O342[理学—固体力学] TB123[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象