关于图的距离无符号拉普拉斯谱半径的下界  

The lower bound of distance signless Laplacian spectral radius of graphs

在线阅读下载全文

作  者:朱银芬 王国平[2] 陈星[1] ZHU Yinfen;WANG Guoping;CHEN Xing(Xinjiang Institute of Engineering Institute of Mathematical, Urumqi 830029,China;Department of Mathematics, Xinjiang Normal University, Urumqi 830017,China)

机构地区:[1]新疆工程学院数理学院,乌鲁木齐830029 [2]新疆师范大学数学科学学院,乌鲁木齐830017

出  处:《华中师范大学学报(自然科学版)》2021年第3期347-350,共4页Journal of Central China Normal University:Natural Sciences

基  金:国家自然科学基金项目(11461071);新疆维吾尔自治区自然科学基金项目(2021D01A65);新疆维吾尔自治区第三期天山英才项目;新疆工程学院科研育人项目(2019xgy702112).

摘  要:若一个连通图G的点集是V(G)={v1,v2,…,vn},那么图G的距离矩阵D(G)=(dij),其中dij表示点vi与vj之间的距离.令TrG(vi)表示点vi到图G中其他所有点的距离之和,Tr(G)表示i行i列位置的元素TrG(vi)的对角矩阵.图G的距离无符号拉普拉斯矩阵QD(G)=Tr(G)+D(G).QD(G)的最大特征值λQ(G)是图G的距离无符号拉普拉斯谱半径.该文确定了给定匹配数的n个点的图的距离无符号拉普拉斯谱半径的下界.Suppose that the vertex set of a connected graph G is V(G)={v1,v2,…,vn}.Let D(G)=(dij)be the distance matrix of G,where dij is distance between vi and vj.Let TrG(vi)be the sum of distances between vi and all other vertices of G,and Tr(G)be the n×n diagonal matrix with its(i,i)-entry equals to TrG(vi).Then QD(G)=Tr(G)+D(G)is the distance signless Laplacian matrix of G.The largest eigenvalue of QD(G),denoted byλQ(G),is the distance signless Laplacian spectral radius of G.In this paper,the lower bound of distance signless Laplacian spectral radius of n-vertex graphs in terms of matching number is characterized.

关 键 词:距离无符号拉普拉斯矩阵 谱半径 匹配数 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象