基于迁移学习的卷积神经网络印刷汉字字体识别模型研究  被引量:4

Study on the Font Type Recognition Model of Printed Chinese Character Using Convolutional Neural Network Based on Transfer Learning

在线阅读下载全文

作  者:闫飞[1,2] 张华[1] 冯春成[1] 李小霞 YAN Fei;ZHANG Hua;FENG Chun-cheng;LI Xiao-xia(Sichuan Key Laboratory of Special Environmental Robot Technology,Southwest University of Science and Technology,Mianyang 621010,China;Mianyang Polytechnic,Mianyang 621000,China)

机构地区:[1]西南科技大学特殊环境机器人技术四川省重点实验室,绵阳621010 [2]绵阳职业技术学院,绵阳621000

出  处:《数字印刷》2021年第2期36-45,共10页Digital Printing

基  金:绵阳职业技术学院资助项目(No.MZY1805)。

摘  要:汉字字体识别是光学字符识别技术(Optical Character Recognition,OCR)中的重要组成部分,归属于模式识别领域。针对目前字体识别方法在多字体识别和特征提取方面存在的问题,本研究提出基于迁移学习方法的深度卷积神经网络模型的印刷汉字字体识别新模型。根据印刷汉字字体识别任务特点对Inception-v3模型结构进行修改,制作印刷汉字字体识别数据集,并通过迁移学习的方法对模型完成训练。实验结果显示,该方法的识别平均准确率为99.83%,与相关的卷积神经网络模型相比,该模型的特征提取能力更强,识别准确率更高。Font type recognition of Chinese character is an important part of OCR(Optical Character Recognition)technology,which belongs to the field of pattern recognition.Aiming at the existing problems in current font recognition methods used in multi-font recognition and feature extraction,a new model of Chinese character font recognition based on the method of transfer learning and the model of deep convolution neural network was proposed in this study.According to the characteristics of Chinese character font recognition task,the structure of the Inception-v3 model was modified and the Chinese character font recognition data set was made,and the model was trained by the method of transfer learning.The experimental results showed that the average recognition accuracy of this model is 99.83%.Compared with the related convolutional neural network model,this model has stronger feature extraction capability and higher recognition accuracy.

关 键 词:迁移学习 字体识别 卷积神经网络 特征提取 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象