检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓廷权 王强[1] DENG Tingquan;WANG Qiang(College of Mathematical Sciences,Harbin engineering university,Harbin 150001,China)
机构地区:[1]哈尔滨工程大学数学科学学院,黑龙江哈尔滨150001
出 处:《智能系统学报》2021年第1期98-107,共10页CAAI Transactions on Intelligent Systems
基 金:国家自然科学基金项目(11471001,61872104)。
摘 要:为使局部线性嵌入(local linear embedding,LLE)这一无监督高维数据的非线性特征提取方法提取出的特征在分类或聚类学习上更优,提出一种半监督类保持局部线性嵌入(semi-supervised class preserving local linear embedding,SSCLLE)的非线性特征提取方法。该方法将半监督信息融入到LLE中,首先对标记样本近邻赋予伪标签,增大标记样本数量。其次,对标记样本之间的距离进行局部调整,缩小同类样本间距,扩大异类样本间距。同时在局部线性嵌入优化目标函数中增加全局同类样本间距和异类样本间距的约束项,使得提取出的低维特征可以确保同类样本点互相靠近,而异类样本点彼此分离。在一系列实验中,其聚类精确度以及可视化效果明显高于无监督LLE和现有半监督流特征提取方法,表明该方法提取出的特征具有很好的类保持特性。To make local linear embedding(LLE),the nonlinear feature extraction method for unsupervised high-dimensional data,more optimal in classification or clustering learning,we propose a nonlinear semi-supervised class preserving local linear embedding(SSCLLE)feature extraction method.This method integrates semi-supervised information into LLE.First,pseudo-labels are assigned to the nearby neighbors of the labeled samples to increase the number of labeled samples.Second,the distance between the labeled samples is partially adjusted to reduce the distance between similar samples and expand the distance between heterogeneous samples.Simultaneously,the constraints of the globally same sample spacing and heterogeneous sample spacing are added in the local linear embedding optimization objective function so that the extracted low-dimensional features can ensure that the same sample points are near each other,whereas the heterogeneous sample points are separated from each other.In a series of experiments,the clustering accuracy and visualization effect of the proposed method are significantly higher than those of unsupervised LLE and the existing semi-supervised flow feature extraction methods,indicating that the features extracted by this method have good class retention characteristics.
关 键 词:非线性特征提取 流形学习 半监督 标记信息 聚类 可视化
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.247.220