基于Hybrid迭代法的多连通域数值保角变换计算法  被引量:2

Hybrid Iteration Method for Number Conformal Mapping of Multi-Connected Domain

在线阅读下载全文

作  者:唐胜男 吕毅斌[1] 王樱子 房巾莉 武德安[3] TANG Shengnan;L Yibin;WANG Yingzi;FANG Jinli;WU Dean(Faculty of Science,Kunming University of Science and Technology,Kunming 650500,China;Computer Center,Kunming University of Science and Technology,Kunming 650500,China;School of Mathematical Sciences,University of Electronic Science and Technology of China,Chengdu 611731,China)

机构地区:[1]昆明理工大学理学院,云南昆明650500 [2]昆明理工大学计算中心,云南昆明650500 [3]电子科技大学数学科学学院,四川成都611731

出  处:《电子科技》2021年第7期13-18,共6页Electronic Science and Technology

基  金:国家自然科学基金(11461037)。

摘  要:针对模拟电荷法无界多连通区域的数值保角变换问题,文中提出了一种高精度的数值方法,即基于Hybrid迭代法的无界多连通区域的数值保角变换计算法。该方法通过模拟电荷法构造约束方程,对约束方程应用预处理构造对称正定的方程,获得新的模拟电荷和辐角,并构造近似保角变换函数。文中以多连通圆变换为径向狭缝域为例进行数值实验。使用解析函数的最大模原理作为误差的评价指标,并得出了天野法和文中算法的误差曲线。当模拟电荷数N=180,Jordan曲线为C_(2)时,文中算法E_(A2)的误差为1.6767×10^(-7),但是天野法E A2的误差为8.5977×10^(-4)。当模拟电荷数N=180,Jordan曲线为C_(3)时,文中算法E_(Θ3)的误差为5.6351×10^(-10),天野法E_(Θ3)的误差为1.1025×10^(-5)。For the problem of numerical conformal transformation of unbounded multi-connected domain of the charge simulation method,this study presents a high-precision numerical method,that is,Hybrid iteration method for number conformal mapping of multi-connected domain.This method constructs a constrain equation by charge simulation method,applies preprocessing to the constrain equation,constructs a symmetric positive definite equation,obtains new charge simulation and angle,and constructs an approximate conformal mapping function.In this study,the numerical experiment is carried out by taking the mapping of multiple connected domain into radial slit domain as an example.The maximum modulus principle of the analytic function is used as the error evaluation index,and the error curves of the Amano method and the algorithm of this study are drawn.When the number of charge simulation is N=180 and the Jordan curve is C_(2),the error of E_(A2)the algorithm of this study is 1.6767×10^(-7),and the error of E_(A2)in Amano method is 8.5977×10^(-4).When the number of charge simulation is N=180 and the Jordan curve is C_(3),the error of E_(Θ3)in the algorithm of this study is 5.6351×10^(-10),but the error of E_(Θ3)in Amano method is 1.1025×10^(-5).

关 键 词:模拟电荷法 多连通区域 Hybrid迭代法 广义迭代法 投影技术 数值保角变换 解析函数 约束方程 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象