检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王煜林 周登极[1] 郝佳瑞 黄大文 WANG Yulin;ZHOU Dengji;HAO Jiarui;HUANG Dawen(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
机构地区:[1]上海交通大学机械与动力工程学院,上海200240
出 处:《上海交通大学学报》2021年第6期774-780,共7页Journal of Shanghai Jiaotong University
基 金:国家自然科学基金资助项目(51706132)。
摘 要:为在保证测量的准确性和高效性的同时,降低软测量方法对数据集的依赖性,提出一种基于可解释神经网络的压缩机功率软测量方法.实验中,在使用泛化性良好的数据集进行训练时,可解释神经网络模型在测试集上的均方根误差为0.0094,相比反向传播(BP)神经网络模型降低了1.1%.在使用泛化性较差的数据集进行训练时,可解释神经网络模型在测试集上的均方根误差为0.0128,相比BP神经网络模型降低了79.8%.实验结果表明,基于可解释神经网络的压缩机功率软测量方法不但具有较高的准确率,且在使用泛化性较差的数据集进行训练时,依然能够保持较高的测量性能.In order to ensure the accuracy and efficiency of measurement,and reduce the dependence of the soft sensing on dataset,a soft-sensing method of compressor power based on interpretable neural network is proposed.When training on a dataset with good generalization in the experiment,the root mean squared error(RMSE)of the interpretable neural network model on the test set is 0.0094,which is 1.1%lower than that of the back propagation(BP)neural network model.When training on a dataset with poor generalization,the RMSE of the interpretable neural network model on the test set is 0.0128,which is 79.8%lower than that of the BP neural network model.The experimental results show that the soft-sensing method based on interpretable neural network not only has a high accuracy rate,but also can maintain a good measurement performance when training on a dataset with poor generalization.
分 类 号:TK315[动力工程及工程热物理—热能工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15