广义变系数Kadomtsev-Petviashvili方程的孤子解  

Soliton Solution for the General Variable-Coefficient Kadomtsev-Petviashvili Equation

在线阅读下载全文

作  者:郭婷婷 GUO Tingting(Shanxi Vocational University of Engineering Science and Technology,Taiyuan 030619,China)

机构地区:[1]山西工程科技职业大学,山西太原030619

出  处:《太原师范学院学报(自然科学版)》2021年第2期20-24,共5页Journal of Taiyuan Normal University:Natural Science Edition

基  金:山西大学商务学院科研基金(2020040).

摘  要:借助多元变换技巧,将广义变系数Kadomtsev-Petviashvili方程约化为常系数(2+1)维Kadomtsev-Petviashvili方程,基于Hirota双线性方法,按照Wronskian技巧,可以得到常系数Kadomtsev-Petviashvili方程的精确解,再运用多元变换,构造出广义变系数Kadomtsev-Petviashvili方程一般化的单孤子解、双孤子解以及N孤子解,并且展示出单、双孤子解的非线性动力学过程,这将有助于理解孤波的演化发展.With the help of the multivariate transformation technique,the general variablecoefficient Kadomtsev-Petviashvili equation is reduced to constant-coefficient(2+1)dimensional Kadomtsev-Petviashvili equation,based on the Hirota bilinear method,the exact solutions of constant-coefficient Kadomtsev-Petviashvili equation were obtained according to Wronskian technique,then using the multivariate transformation,the generalised one-soliton solutions、two-soliton solutions and N-soliton solutions of the general variable-coefficient Kadomtsev Petviashvili equation are presented,and the nolinear dynamics process of the one-and two-soliton solutions are showed which can help us better understand the evolution of soliton waves.

关 键 词:广义变系数Kadomtsev-Petviashvili方程 多元变换技巧 HIROTA双线性方法 孤子解 

分 类 号:O129.35[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象