检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韦联福 WEI Lianfu(College of Science,Donghua University,Shanghai 200269;School of Information Science and Technology,Southwest Jiaotong University,Chengdu,Sichuan 610031)
机构地区:[1]东华大学理学院,上海200269 [2]西南交通大学信息科学与技术学院,四川成都610031
出 处:《物理与工程》2021年第2期31-35,40,共6页Physics and Engineering
基 金:上海高校本科重点教改项目(SJ201905);国家自然科学基金(11974290)。
摘 要:关于力学系统拉格朗日函数非唯一性问题所蕴含的物理意义,各种教学研究期刊都刊发了不少论文进行论述,但仍存在某些争议。本文从拉格朗日函数非唯一性等价于动力学系统广义规范选择的任意性这一基本性质出发,证明无论是拉格朗日方程还是哈密顿正则运动方程都具有这种规范变换的协变性。由此,澄清了近期一些文献和网络上关于文献中规范变换是否可以看作是一种正则变换的争议,供教学参考。Although a series of papers have been published to discuss the non-uniqueness of Lagrange function in mechanics,certain arguments on this topic still exist.Here,based on the equivalence between the non-uniqueness of Lagrange function and the arbitrary of gauge choice,we show that both the Lagrangian equation and Hamiltonian canonical equation are gauge covariant,in detail.Specifically,we address the question under debate,i.e.,whether the transformation that leaves the Lagrange equation of motion invariant is also a canonical transformation,and show that it is Yes.Therefore,given a Lagrange function corresponds to choose a gauge,and dynamical equation is covariant under the gauge transformation.
关 键 词:拉格朗日函数的非唯一性 规范选择任意性 规范变换 正则变换
分 类 号:G642[文化科学—高等教育学] O316-4[文化科学—教育学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13