检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张银波 李思宁[1] 姜鹏 孙剑峰[1,3] Zhang Yinbo;Li Sining;Jiang Peng;Sun Jianfeng(National Key Laboratory of Science and Technology on Tunable Laser,Institute of Opto-Electronic,Harbin Institute of Technology,Harbin 150001,China;Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory,Beijing 100074,China;Harbin Institute of Technology(Beijing)Industrial Technology Innovation Research Institute Co.,Ltd,Beijing 101312,China)
机构地区:[1]哈尔滨工业大学光电子技术研究所可调谐(气体)激光技术重点实验室,黑龙江哈尔滨150001 [2]复杂系统控制与智能协同技术重点实验室,北京100074 [3]哈工大(北京)工业技术创新研究院有限公司,北京101312
出 处:《红外与激光工程》2021年第6期201-207,共7页Infrared and Laser Engineering
摘 要:针对水下激光雷达探测得到的尾流回波信号由于非稳态造成特征提取困难、不易识别的问题,提出了基于PCA特征提取与弹性BP神经网络结合的水下气泡识别算法。首先对连续采集的回波信号进行切片预处理,然后采用PCA算法对拼接的高维样本进行主要特征提取,确定特征值个数,其次对弹性BP神经网络进行参数的选择,确定能实现最优分类的隐含层节点数、特征个数等,最后根据室内搭建的尾流探测模拟平台,实现对气泡群和干扰目标的识别。实验结果表明:在隐含节点为12,增量因子为1.15,减量因子为0.55时,选取两个特征值能对有气泡、无气泡及干扰物进行有效分类;识别率随着气泡群密度的增大提升13.4%,在低密度下的识别率随激光能量的增加平均提升6.3%,识别率随距离的增加先增大后减小,气泡群在2.2 m时的目标峰特征明显,平均识别率提升3.5%。通过与自适应附加动量BP对比,该方法在减少识别时间的同时准确率达到99.1%,证明该算法可有效运用于激光雷达舰船尾流气泡的识别。Aiming at the problem of difficulty in feature extraction and identification of wake echo signals detected by underwater lidar due to instability,an underwater bubbles recognition algorithm based on PCA feature extraction and elastic BP neural network was proposed.First,slice preprocessing was carried out on the echo signals collected continuously.Then the PCA algorithm was used to extract the main features of the spliced high-dimensional samples to determine the number of feature values.Then the parameters of the elastic BP neural network was selected to determine the number of hidden layer node and the number of features that can achieve optimal classification.Finally,an indoor wake detection simulation platform was used to realize the identification of bubbles and interfering targets.The experimental results show that when the hidden node is 12,the increment factor is 1.15,and the decrement factor is 0.55,two eigenvalues can be selected to classify the bubbles,non-bubbles and interfering targets.The recognition rate increases by 13.4%with the increase of bubbles density.At low density,the average recognition rate increases by 6.3%with the increase of laser energy.The recognition rate first increases and then decreases with the increase of distance.When the bubbles distance is 2.2 m,the target peak characteristics are obvious,and the average recognition rate is improved by 3.5%.Compared with adaptive and additional momentum BP,this method can reduce recognition time and achieve 99.1%accuracy.It is proved that this algorithm can be effectively and widely used in the recognition of bubbles in the ships wake by lidar.
关 键 词:激光雷达 气泡识别 PCA特征提取 弹性BP网络
分 类 号:TN959[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28