检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张原 熊凯[1] 邢琰[1] ZHANG Yuan;XIONG Kai;XING Yan(Beijing Institute of Control Engineering,Beijing 100090,China)
出 处:《空间控制技术与应用》2021年第3期16-23,共8页Aerospace Control and Application
基 金:国家自然科学基金资助项目(61573059)。
摘 要:针对星间距离测量容易受到外界干扰的问题,提出了一种适用于多颗地球卫星和一颗月球卫星的卫星星座自主导航的并行扩展卡尔曼滤波算法.通过解决噪声统计不确定情况下的测量调度问题来选择适当的测量,降低干扰的影响.为了自适应地选择适当的测量,提出一种基于不同来源的测量构造多个子集的并行扩展卡尔曼滤波器,其中每个扩展卡尔曼滤波器用于处理不同测量子集,并基于残差序列计算子滤波器的权重,组合并行滤波器的估计结果.通过与EKF和传统的多模型自适应估计算法进行比较,表明所提出方法在干扰条件下的三轴位置估计误差的稳定性,体现了性能优势.A parallel extended Kalman filter(PEKF)algorithm for autonomous navigation of satellite constellation with multiple earth satellites and one lunar satellite is proposed.By solving the measurement selection problem with noise statistic uncertainty,the appropriate measurement is selected to reduce the exterior disturbance.By solving the measurement scheduling problem in the case of noise statistics uncertainty,the appropriate measurement is selected to reduce the impact of interferenceIn order to adaptively select appropriate measurements,the PEKF based on multiple subsets of measurements from different sources is proposed.Each extended Kalman filter(EKF)is used to process different measurement subsets,and the weight of the sub filters is calculated based on the residual sequence,compared with EKF and traditional multi model adaptive estimation(MMAE)algorithm,the results show that the proposed method is stable in the three-axis position estimation error under the condition of interference,which reflects the advantage of the performance.
关 键 词:并行扩展卡尔曼滤波器 自主导航 噪声统计不确定 卫星星座 测量调度
分 类 号:V448.224[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.250.110