检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹传忠[1] 方颢蓉 武中凯 郑士源[1] YIN Chuanzhong;FANG Haorong;WU Zhongkai;ZHENG Shiyuan(College of Transport&Communications,Shanghai Maritime University,Shanghai 201306,China;Business Development Department,China Railway Harbin Group Co.,Ltd.,Harbin 150006,China;School of Mechanical Engineering,Dalian Jiaotong University,Dalian 116028,China)
机构地区:[1]上海海事大学交通运输学院,上海201306 [2]中国铁路哈尔滨局集团有限公司经营开发部,黑龙江哈尔滨150006 [3]大连交通大学机械工程学院,辽宁大连116028
出 处:《铁道科学与工程学报》2021年第6期1595-1603,共9页Journal of Railway Science and Engineering
基 金:上海市2019年度“科技创新行动计划”软科学研究领域重点项目(19692105400);中国铁路总公司科技研究开发计划重点课题(2017X009-J)。
摘 要:多式联运具有参与对象多、运作环节复杂等特点以及经济性、时效性上的要求。考虑在途时间和中转时间的随机性、交货时间窗以及不同运输方式的班期限制对多式联运的影响,将一般的多式联运路径优化模型扩展为随机机会约束规划模型。该模型以总期望成本与总期望时间为优化目标,引入货物在规定时间内交付的概率以直观反映运输服务水平。设计了蒙特卡洛模拟和改进的自适应NSGA-II相结合的混合启发式算法(MO-ANSGA-II)求解,通过具体算例验证了模型及算法的有效性。研究结果表明:班期限制和随机性因素会对运输方案的成本、时间、准时率产生影响,从而改变帕累托最优运输方案组;考虑多式联运中不确定性因素更加符合实际,研究可为制定并优化多式联运方案提供决策支持。Multimodal transportation has the characteristics of large number of participants and complex operations and the requirements on economy and time effectiveness.This paper considers the influence ofthe randomness of travel time and transfer time,the delivery time window and the fixed schedule of different transportation on the multimodal transportation,and expands the general multimodal transportation path optimization model to stochastic chance-constrained model.We took the total expected cost and time as the optimization objectives,and introduced the delivered probability within the specified time to intuitively reflect service level. A hybrid heuristic algorithm combining Monte-Carlo simulation and improved adaptive NSGA-II(MO-ANSGA-II) was designed. The effectiveness of the model and algorithm is verified by an example. Theresults show that schedule restrictions and stochastic will have an impact on the cost, time and on-time rate oftransportation plans, thereby changing the pareto optimal transportation plan group. It is more realistic to considerthe uncertainty in the multimodal transportation. This research can provide decision support for formulating andoptimizing multimodal transport schemes.
关 键 词:多式联运 多目标优化 随机机会约束 MO-ANSGA-II 准时率
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.199.214