集装箱箱号字符识别算法研究  被引量:5

Research on Recognition Algorithms for Container Code Character

在线阅读下载全文

作  者:曹林根 宓超[1] CAO Lingen;MI Chao(College of Logistics Engineering,Shanghai Maritime University,Shanghai 201306,China)

机构地区:[1]上海海事大学物流工程学院,上海201306

出  处:《计算机工程与应用》2021年第15期178-185,共8页Computer Engineering and Applications

基  金:上海市科学技术委员会(18295801100)。

摘  要:针对集装箱箱号图像中存在的光照不均、箱号的偏转和倾斜等因素,着重研究箱号字符识别中的关键技术问题。对于箱号图像光照不均问题,采用一种改进型的差分边缘检测粗定位算法;利用改进的最小二乘法有效地解决箱号偏转难以精确定位问题;运用基于梯度下降投影字符矫正及分割算法,实现对倾斜箱号的校正与分割;采用BP神经网络进行字符识别。对1 050幅不同条件的拍摄图像进行实验,结果表明上述算法相对于传统算法与深度学习算法,综合识别率明显提高,且符合实时性要求。Aiming at the factors such as uneven illumination,deflection and tilt of container number in the image of container number,the key technical problems in character recognition of container number are mainly studied.For the problem of uneven illumination of container number image,an improved rough location method of differential edge detection is adopted.The improved least squares method is used to effectively solve the problem of container number deflection which is difficult to locate accurately.A gradient descending projection character correction and segmentation algorithm is used to realize the correction and segmentation of tilted container number.The BP network is used for character recognition.Experiments on 1050 images captured under different conditions show that the comprehensive recognition rate of the above algorithm is significantly improved compared with traditional algorithm and depth learning algorithm,and it meets the real-time requirements.

关 键 词:集装箱箱号识别 差分边缘 最小二乘法 倾斜校正 BP神经网络 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象