基于神经网络的汽车侧面造型评价方法  被引量:6

Evaluation method of vehicle side modeling based on neural network

在线阅读下载全文

作  者:王欢欢[1,2] 初胜男 顾经纬 WANG Huan-huan;CHU Sheng-nan;GU Jing-wei(College of Mechanical Engineering,Tianjin University of Science&Technology,Tianjin 300222,China;Tianjin Key Laboratory of Integrated Design and On-Line Monitoring for Light Industry&Food Machinery and Equipment,Tianjin 300222,China)

机构地区:[1]天津科技大学机械工程学院,天津300222 [2]天津市轻工与食品工程机械装备集成设计与在线监控重点实验室,天津300222

出  处:《图学学报》2021年第4期688-695,共8页Journal of Graphics

基  金:国家自然科学基金项目(51505333)。

摘  要:利用反向传播(BP)神经网络,在MATLAB中搭建汽车造型轮廓与意象语义之间的关系模型,快速判断汽车侧面造型风格。随后利用卷积神经网络(CNN)搭建的表情识别模型建立汽车造型评价系统,分析并识别用户对于新设计的喜好程度,以得到符合用户情感需求的汽车侧面造型方案。最后通过实例验证方法的可行性,并推断出流线型汽车的最佳曲率范围。实验结果表明,基于神经网络的汽车造型量化评价方法可以较准确地对产品造型设计进行评价并以数据形式得到具体意象的侧面造型。By using the back propagation(BP)neural network,the relationship between car styling contours and image semantics was constructed in MATLAB to quickly judge the vehicle side modeling style.Then the expression recognition model built by the convolutional neural network(CNN)was employed to establish the automobile model evaluation system,and to analyze and identify users’preferences for the new design,thus obtaining the vehicle side modeling scheme which can meet users’emotional needs.Finally,the feasibility of the method was verified through examples,and the optimal curvature range of the flow-type car was inferred.The experimental results show that the quantitative evaluation method of automobile modeling based on neural networks can evaluate the product modeling design more accurately and produce the side shape of concrete image in the form of data.

关 键 词:BP神经网络 汽车侧面造型 意象 表情识别 用户情感需求 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象