检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵顺心
出 处:《数学学习与研究》2021年第23期132-133,共2页
摘 要:Wigner's定理任何对称变换都可以由复Hilbert空间上的线性和酉或反线性和反酉的算子来表示.关于赋范空间上该定理的证明已经相对完善.如果满映射f满足函数方程{‖f(x)+f(y)‖,‖f(x)-f(y)‖}={‖x+y‖,‖x-y‖}(x,y∈X),(1)我们称其是满足相位等距的.本文是将X限定为lp差分序列空间,证明存在这样的相位函数使得满足相位等距的条件可以相位等价于一个线性映射.
关 键 词:Wigner's定理 相位等价 线性等距
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7