检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵慧[1] 容芷君[1] 许莹 但斌斌[1] 乔瀚 ZHAO Hui;RONG Zhi-jun;XU Ying;DAN Bin-bin;QIAO Han(Department of Industrial Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;The Fifth Hospital of Wuhan, Wuhan 430050, China)
机构地区:[1]武汉科技大学工业工程系,武汉430081 [2]武汉市第五医院,武汉430050
出 处:《科学技术与工程》2021年第18期7584-7590,共7页Science Technology and Engineering
基 金:武汉市科技局企业技术创新项目(201901070211288)。
摘 要:合并症预测是典型的多标签分类问题,有效利用标签之间的相关性是提高多标签分类模型精度的关键。针对该问题提出了高血压患者常见合并症的预测模型AR-MLKNN(multi-label k-nearest neighbor based on association rules),首先从不同语义空间的临床概念中构建了患者特征表示,然后通过疾病标签关联信息量化合并症并发关系,并基于样本k邻域内标签的概率分布以后验概率的方式计算样本对每个疾病标签的隶属概率。利用合并症并发关系和疾病标签隶属概率映射形成合并症风险矩阵,基于合并症风险值,根据最小化分类损失的原则动态调整分类阈值以获取最优分类结果。实验结果表明该模型可以对高血压合并症进行较为准确的预测,F1-score达到82%,相较于常规的ML-KNN(multi-label k-nearest neighbor)模型提高了8%,在临床辅助决策领域具有一定的应用价值。Complication prediction is a typical multi-label classification problem.Making effective use of the correlation between labels is critical to improve the accuracy of multi-label classification models.In response to this problem,a predictive model AR-MLKNN(multi-label k-nearest neighbor based on association rules)of common complications in hypertension patients was proposed.Firstly,The characteristic representation of patients was constructed from clinical concepts in different semantic spaces.Secondly,the association information of disease labels was used to quantify the concurrent relationship of complications,and the membership probability of each disease label was calculated based on the probability distribution of k-neighborhood labels of unknown samples.Finally,the complication concurrency relationship and disease label membership probability were mapped to form a complication risk matrix.Based on the complication risk value,the classification threshold is dynamically adjusted based on the principle of minimizing the classification loss to obtain the optimal classification result.The experimental results show that the model can predict hypertension complications more accurately.The F1-score reaches 82%,which is 8%higher than the conventional ML-KNN(multi-label k-nearest neighbor)model.Therefore it may have some application value in the field of clinical-assisted decision.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229