检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱峰[1] 蒋倩倩 林川[1] 杨啸 ZHU Feng;JIANG Qianqian;LIN Chuan;YANG Xiao(School of Electrical Engineering,Southwest Jiaotong University,Chengdu 611756,China)
机构地区:[1]西南交通大学电气工程学院,四川成都611756
出 处:《系统工程与电子技术》2021年第9期2400-2406,共7页Systems Engineering and Electronics
基 金:国家自然科学基金(60831001);国防基金(9140A31010109HK0101)资助课题。
摘 要:由于民航周围电磁环境复杂,一旦产生电磁干扰(electromagnetic interference,EMI),就不易被排查,特别是随机性较强的宽带干扰。对此,提出一种基于支持向量机(support vector machine,SVM)的干扰源识别方法。通过实时测量干扰信号的频谱数据,并分析其特点,选择包络因子、频谱能量、频谱峰值、均值和方差5个特征向量,用主成分分析法降低数据冗余程度,最后采用SVM来判断干扰源类型。仿真结果证明,所提算法能有效识别6类典型机场宽带干扰源,识别精度可达98.33%。Due to the complex electromagnetic environment around civil aviation,once the electromagnetic interference (EMI)is produced,it is not easy to be investigated,especially the random strong wideband interference.For wideband,an interference source recognition method based on support vector machine (SVM)is proposed.By measuring the spectral data of the signal in real time and analyzing its characteristics,five features of the evenlope factor,energy,peak value,mean and variance are selected as feature vectors,and principal component analysis is used to reduce data redundancy,finally,the type of the interference source is determined by SVM.Simulation results show that the identification algorithm proposed in this paper can effectively identify 6 types of wideband interference,and the identification accuracy is up to 98.33%.
分 类 号:V243.1[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30