高效液相色谱-原子荧光光谱法测定稻米中的砷形态  被引量:3

Detection of arsenic species in rice by high performance liquid chromatography-atomic fluorescence spectrometry method

在线阅读下载全文

作  者:李鑫[1] 刘丽菁[1] 林坚[1] 杨艳[1] LI Xin;LIU Lijing;LIN Jian;YANG Yan(Fujian Center for Disease Control and Prevention(Fujian Provincial Key Laboratory of Zoonosis Research),Fuzhou,Fujian 350001,China)

机构地区:[1]福建省疾病预防控制中心(福建省人兽共患病研究重点实验室),福建福州350001

出  处:《海峡预防医学杂志》2021年第3期4-6,17,共4页Strait Journal of Preventive Medicine

基  金:福建省卫生健康科技计划项目资助(2017-1-22);福建省自然科学基金面上项目(2020J01092)。

摘  要:目的采用高效液相色谱-原子荧光光谱(HPLC-AFS)联用技术,建立稻米中亚砷酸As(Ⅲ)、砷酸As(Ⅴ)、一甲基砷(MMA)、二甲基砷(DMA)等砷形态的分析方法。方法通过优化样品的前处理及色谱分离条件,实现对稻米中砷形态的快速测定。结果该法在9 min内实现稻米中4种砷形态的分离和检测,各组分的相关系数(r)0.9992~0.9999,均呈现良好的线性关系,最低的检出限达到0.195 ng/mL,平均回收率84.0%~115.7%,各组分的相对标准偏差(RSD)均小于6.6%。结论 HPLC-AFS联用技术可有效、快速测定稻米中形态砷的含量,且前处理简单,运行成本低,易推广应用,尤其适合大批量的样品检测。Objective To establish a method of simultaneous detection of arsenic species As(Ⅲ), As(Ⅴ), MMA and DMA in rice by using high-performance liquid chromatography-atomic fluorescence spectrometry(HPLC-AFS) method. Methods The arsenic species in rice were rapid detected by optimizing sample pretreatment and chromatographic separation conditions. Results The separation and detection of four kinds of arsenic species can be accomplished within 9 min. The correlation coefficients were 0.999 2-0.999 9 in each component and shown better linear relationship. The lowest limit of detection was 0.195 ng/mL. The mean recovery rates were 84.0%-115.7%, and relative standard deviations of all components were <6.6%. Conclusion HPLC-AFS coupling technique is a effective, rapid and accurate method for detection of the content of arsenic species in rice. And this method is of simple sample pretreatment, low running cost, easy popularization and application, and especially suitable for detection of large number of samples.

关 键 词:稻米 砷形态 高效液相色谱-原子荧光光谱(HPLC-AFS) 

分 类 号:R155.5[医药卫生—营养与食品卫生学] O657.7[医药卫生—公共卫生与预防医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象