检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨悦 谢辛 何蕾[1] 胡敏[3] YANG Yue;XIE Xin;HE Lei;HU Min(School of Mathematics, Hefei University of Technology, Hefei 230601, China;College of Computer Science, Chongqing University, Chongqing 400044, China;School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230601, China)
机构地区:[1]合肥工业大学数学学院,安徽合肥230601 [2]重庆大学计算机学院,重庆400044 [3]合肥工业大学计算机与信息学院,安徽合肥230601
出 处:《合肥工业大学学报(自然科学版)》2021年第8期1146-1152,共7页Journal of Hefei University of Technology:Natural Science
基 金:国家自然科学基金资助项目(61502141,61070227,61472466,61672202)。
摘 要:基于卷积神经网络的图像超分辨率重建算法是数字图像处理领域近年来的研究热点。针对低分辨率图像在预处理时使用双三次插值导致图像丢失一些重要的高频纹理细节以及网络模型优化问题,文章提出了连分式插值结合卷积神经网络的超分辨率重建方法。在原有的轻量级基于卷积神经网络的超分辨率重建算法(super-resolution convolutional neural net work,SRCNN)网络模型基础上,首先采用Newton-Thiele型连分式插值函数将低分辨率图像插值到目标尺寸;然后利用3个卷积层进行图像特征提取、非线性映射、重建与优化;该文在网络收敛时利用Radam优化算法自适应地调整梯度,并且采用余弦衰减法逐渐降低学习率。实验结果表明,该网络模型能够在轻量级的卷积神经网络下获得更丰富的纹理细节和更清晰的图像边缘。Image super-resolution reconstruction using deep convolutional neural network is a research hotspot in the field of digital image processing in recent years.In order to solve the problems of the loss of some important high frequency texture details during the preprocessing of low-resolution images by using bicubic interpolation and the optimization of the network model,a super-resolution reconstruction method combining continued fraction interpolation with convolutional neural network was proposed.On the basis of the original lightweight super-resolution convolutional neural net work,SRCNN network model,the Newton-Thiele continued fraction interpolation function was firstly used to interpolate the low-resolution image to the target size.Then three convolution layers were used for image feature extraction,nonlinear mapping,reconstruction and optimization.At the same time,Radam algorithm was used to adjust the gradient adaptively when the network converged,and the cosine attenuation method was used to gradually reduce the learning rate.The experimental results show that the network model designed in this paper can obtain richer texture details and clearer image edges under the lightweight convolutional neural network.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33