检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:车颖[1] 冯皛 郑宏亮[2] CHE Ying;FENG Xiao;ZHENG Hongliang(The First Affifiliated Hospital of Dalian Medical University,Dalian 116011,Liaoning Province,China;School of Computer and Information Technology,Liaoning Normal University,Dalian 116029,Liaoning Province,China)
机构地区:[1]大连医科大学附属第一医院,辽宁大连116011 [2]辽宁师范大学计算机与信息技术学院,辽宁大连116029
出 处:《吉林大学学报(理学版)》2021年第5期1256-1259,共4页Journal of Jilin University:Science Edition
基 金:中央引导地方科技发展资金计划项目(批准号:2021JH6/10500158).
摘 要:针对超声造影图像包含大量噪声的问题,提出一种基于卷积神经网络的超声图像去噪方法.首先,通过图像平移、翻转、旋转等数据增强方法扩充稀缺的超声造影图像样本数量;其次,通过重叠切割小图像块,进一步扩充样本数量;最后,以图像块和人工噪声为输入训练集,训练基于卷积网络结构的去噪模型.实验结果表明,该方法可有效扩展至不同大小的超声造影图像,对于超声造影图像去噪后的峰值信噪比高于传统的图像去噪方法.Aiming at the noise problem of contrast-enhanced ultrasound(CEUS)image,we proposed a denoisng method of contrast-enhanced ultrasound image based on convolutional neural networks.Firstly,the number of rare contrast-enhanced ultrasound image samples was expanded by data enhancement methods such as image translation,image flipping and image rotation.Secondly,the number of samples was further expanded by overlapping small image blocks.Finally,image blocks and artificial noise were used as input training sets to train the denoising model based on convolutional network structure.The experimental results show that the proposed method can be effectively extended to different sizes of CEUS images,and the peak signal-to-noise ratio of CEUS images after denoising is higher than that of traditional image denoising methods.
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166