检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王姝[1] 任玉 关展旭 王晶[1] WANG Shu;REN Yu;GUAN Zhan-xu;WANG Jing(School of Information Science&Engineering,Northeastern University,Shenyang 110819,China)
机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110819
出 处:《东北大学学报(自然科学版)》2021年第9期1246-1253,共8页Journal of Northeastern University(Natural Science)
基 金:国家重点研发计划项目(2019YFE0105000);矿冶过程自动控制技术国家(北京市)重点实验室开放课题(BGRIMM-KZSKL-2018-09).
摘 要:D-S证据理论可应用于多源数据融合领域,但在处理高度冲突的证据时,可能会出现反直觉的结果.为解决这一问题,本文提出了差异信息量的概念及融合方法.首先,通过信息熵表明证据的相对重要性,采用散度获取证据可信度.然后利用证据可信度优化证据差异度以得到差异信息量,经过计算获取数据的最终权重,并将其作为D-S证据理论中的基本概率分配进行决策.在处理冲突证据、一致证据及不同数量证据等方面的数据融合问题时与其他方法对比,所提方法收敛更快,准确度更高.故障诊断的应用实例表明,所提方法的不确定性更小,优于现存的其他方法.D-S evidence theory can be applied to the field of multi-source data fusion.However,counter-intuitive results may come out when handing highly conflicting evidences.In order to solve this problem,a modified fusion method with the concept of difference information(DI)was proposed.First,information entropy indicated the relative importance of evidence,and divergence was used to obtain the credibility of evidence.Then,the evidence difference was optimized by the credibility of the evidence to obtain difference information(DI).The final weight of the calculated data was used as the basic probability distribution in D-S evidence theory for decision-making.Compared with other methods in dealing with conflicting evidence,consistent evidence,and different amounts of evidence,the proposed method converges faster and has higher accuracy.The application examples of fault diagnosis show that the proposed method has less uncertainty and is better than other existing methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3