检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李伟 梁雯君 史韬 邓胜 杨建平[1] LI Wei;LIANG Wen-jun;SHI Tao;DENG Sheng;YANG Jian-ping(School of Electronics and Information Engineering,Jinggangshan University,Ji’an,Jiangxi 343009,China)
机构地区:[1]井冈山大学电子与信息工程学院,江西吉安343009
出 处:《井冈山大学学报(自然科学版)》2021年第4期71-75,共5页Journal of Jinggangshan University (Natural Science)
基 金:国家自然科学基金项目(31260238)。
摘 要:运用四阶Runge-Kutta求取了Lorenz系统的时间序列,采用小波分解与信息熵计算了时间序列的小波熵值,并用来测度系统准周期运动过程中的复杂度。计算结果表明,系统的三个运动复杂度分量均由许多大小不一、形状相似、山峰状的循环窗口组成,并且在不同的尺度上具有自相似特征,系统的小波熵序列也具有混沌性质,其运动具有准周期特性,进一步研究发现,在Lorenz系统运动的整个准周期过程中,运动复杂度的大小不同,复杂度大时,对应短准周期,复杂度小时对应于长准周期,系统的演变过程由各种不同的长准周期和短准周期交替组成。The time series of the Lorenz chaotic sequences was calculated by fourth-order Runge-Kutta method.Then the wavelet entropy of the system was calculated by using wavelet decomposition and information entropy,which was used to measure the complexity of the system in the process of quasi-periodic motion.The results showed that for Lorenz model,its three complexities were all chaotic and composed of many cycling windows which had varied size,similar shape,peak shape.The wavelet entropy sequence of the system was also chaotic and its motion was quasi periodic.It was found that the motion complexity was different in the whole quasi periodic process of Lorenz system.When the complexity was large,it corresponded to short quasi period;when the complexity was small,it corresponded to long quasi period.The evolution process of Lorenz system was composed of different long and short quasi period.
关 键 词:RUNGE-KUTTA法 LORENZ系统 小波熵 准周期
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46