基于标签的在线学习资源推荐算法  被引量:1

Online learning resource recommendation algorithm based on tag

在线阅读下载全文

作  者:文谧 朱木清[2] WEN Mi;ZHU Muqing(Guangzhou Institute of Applied Science and Technology,Guangzhou 511370,China;Huali College,Guangdong University of Technology,Guangzhou 511325,China)

机构地区:[1]广州应用科技学院,广州511370 [2]广东工业大学华立学院,广州511325

出  处:《智能计算机与应用》2021年第8期118-120,125,共4页Intelligent Computer and Applications

基  金:广东高校省级重点平台和重大科研项目(青年创新人才类)(2016KQNCX212)。

摘  要:在线学习是目前获取知识的一种重要途径,然而信息过载导致从在线学习平台的大量资源中找到所需的学习资源非常困难。本文提出了一种基于标签的推荐算法,混合基于内容推荐和协同过滤推荐,采用TF-IDF来平衡热门标签的权重,采用修正的余弦函数相似性计算用户间、资源间的相似性,结合学科知识图谱,让推荐结果在相似基础上增加扩展性,满足进阶学习特点。实验结果表明,本文提出的算法在准确率和推荐效率上优于传统的协同过滤推荐算法,为解决同类问题提供了较强的参考价值。Online learning is an important way to acquire knowledge.However,the overload of information makes it very difficult to find satisfactory learning resources from a large number of resources of online learning platform.This paper proposes a tag based recommendation algorithm,which combines content-based recommendation and collaborative filtering recommendation.TF-IDF is used to balance the weight of hot tags.The modified cosine function similarity is used to calculate the similarity between users and resources.Combined with the subject knowledge map,the recommendation results can be expanded on the basis of similarity to meet the characteristics of advanced learning.Experimental results show that the proposed algorithm is superior to the traditional collaborative filtering recommendation algorithm in accuracy and recommendation efficiency,which provides a strong reference for solving similar problems.

关 键 词:标签 推荐系统 协同过滤 在线学习资源 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象