检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:文谧 朱木清[2] WEN Mi;ZHU Muqing(Guangzhou Institute of Applied Science and Technology,Guangzhou 511370,China;Huali College,Guangdong University of Technology,Guangzhou 511325,China)
机构地区:[1]广州应用科技学院,广州511370 [2]广东工业大学华立学院,广州511325
出 处:《智能计算机与应用》2021年第8期118-120,125,共4页Intelligent Computer and Applications
基 金:广东高校省级重点平台和重大科研项目(青年创新人才类)(2016KQNCX212)。
摘 要:在线学习是目前获取知识的一种重要途径,然而信息过载导致从在线学习平台的大量资源中找到所需的学习资源非常困难。本文提出了一种基于标签的推荐算法,混合基于内容推荐和协同过滤推荐,采用TF-IDF来平衡热门标签的权重,采用修正的余弦函数相似性计算用户间、资源间的相似性,结合学科知识图谱,让推荐结果在相似基础上增加扩展性,满足进阶学习特点。实验结果表明,本文提出的算法在准确率和推荐效率上优于传统的协同过滤推荐算法,为解决同类问题提供了较强的参考价值。Online learning is an important way to acquire knowledge.However,the overload of information makes it very difficult to find satisfactory learning resources from a large number of resources of online learning platform.This paper proposes a tag based recommendation algorithm,which combines content-based recommendation and collaborative filtering recommendation.TF-IDF is used to balance the weight of hot tags.The modified cosine function similarity is used to calculate the similarity between users and resources.Combined with the subject knowledge map,the recommendation results can be expanded on the basis of similarity to meet the characteristics of advanced learning.Experimental results show that the proposed algorithm is superior to the traditional collaborative filtering recommendation algorithm in accuracy and recommendation efficiency,which provides a strong reference for solving similar problems.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.71.93