检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:翁玉尚 肖金球[1,2] 夏禹 WENG Yushang;XIAO Jinqiu;XIA Yu(College of Electronics and Information Engineering,Suzhou University of Science and Technology,Suzhou,Jiangsu 215009,China;Intelligent Measurement and Control Engineering Technology Research Center,Suzhou University of Science and Tech-nology,Suzhou,Jiangsu 215009,China)
机构地区:[1]苏州科技大学电子与信息工程学院,江苏苏州215009 [2]苏州市智能测控工程技术研究中心,江苏苏州215009
出 处:《计算机工程与应用》2021年第19期235-242,共8页Computer Engineering and Applications
基 金:江苏省产学研前瞻性联合项目基金(BY2011132);江苏省研究生创新与教改项目(09150001);苏州科技大学研究生创新工程基金(SKCK17_025)。
摘 要:在带钢的生产过程中可能会因为生产工艺的问题导致带钢表面出现缺陷,传统的带钢表面检测方法存在检测速度慢、检测精度低等问题。在计算机深度学习快速发展的今天,为实现带钢表面缺陷快速有效的检测,提出改进的掩码区域卷积神经网络(MaskR-CNN)算法,使用k-meansII聚类算法改进区域建议网络(RPN)锚框生成方法;同时调整MaskR-CNN模型的网络结构,去掉掩码分支,提高了模型的缺陷检测速度。实验在NEU-DET数据集的5种缺陷检测中将原算法的均值平均精度(mAP)从0.8102提升到0.9602,检测速度达到5.9 frame/s。并且能够实现对缺陷目标的检测和实例分割,以便研究人员观测缺陷的大小和形状,从而改进工艺。相比于目前其他深度学习的缺陷检测算法,更能满足带钢的生产检测要求。In the production process of strip steel,the surface defects of strip steel may be caused by the problems of production process.The traditional surface detection methods of strip steel have the problems of slow detection speed and low detection accuracy.With the rapid development of computer deep learning,in order to achieve rapid and effective detection of strip surface defect,this paper proposes a new algorithm based on improved Mask Region Convolution Neural Network(Mask R-CNN),and uses k-means II clustering algorithm to improve the anchor frame generation method of Region Proposal Network(RPN).At the same time,it adjusts the network structure of Mask R-CNN,removes the mask branches,and improves the defect detection speed of the model.In the experiments,the mean Average Precision(mAP)of the original algorithm is improved from 0.8102 to 0.9602 in 5 kinds of defect detections of NEU-DET data set,and the detection speed reaches 5.9 frame/s.And it can detect the defect target and segment the case,so that researchers can observe the size and shape of the defect,so as to improve the process.Compared with other deep learning defect detection algorithms,it can better meet the requirements of strip production detection.
关 键 词:深度学习 带钢表面缺陷检测 锚框 聚类算法 掩码分支
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249