办公建筑运行能耗的混沌时间序列复合预测  被引量:9

Chaotic time series composite prediction of officebuilding energy consumption

在线阅读下载全文

作  者:于军琪[1] 段佳音 赵安军[1] 井文强 王佳丽[1] YU Junqi;DUAN Jiayin;ZHAO Anjun;JING Wenqiang;WANG Jiali(School of Building Services Science and Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,P.R.China)

机构地区:[1]西安建筑科技大学建筑设备科学与工程学院,西安710055

出  处:《重庆大学学报》2021年第9期77-87,共11页Journal of Chongqing University

基  金:安徽建筑大学智能建筑与建筑节能安徽省重点实验室开放课题资助项目(Z20190383);碑林区应用技术研发类资助项目(GX1903)。

摘  要:针对办公建筑已有的能耗预测方法中未能考虑到能耗数据的混沌变化特性,提出了一种基于混沌时间序列的办公建筑运行能耗预测方法。对研究对象的时间序列进行相空间重构,判断其具备混沌特性,建立混沌理论和支持向量回归的组合模型进行训练,采用Markov链消除组合模型由于参数传递产生的累积误差,得到最终预测结果。为了验证算法的有效性,以西安某办公建筑的能耗监测数据为例进行实例分析,并与非线性自回归神经网络、支持向量回归等其他预测方法进行对比。实验结果表明,经过Markov修正后的混沌时间序列组合模型预测精度显著提高,预测效果优于其他方法,且更符合办公建筑能耗的变化规律,为节能优化提供有效的数据支撑。The existing energy consumption prediction methods for office buildings fail to take into account the chaotic change characteristics of energy consumption data.In this paper,a method of energy consumption prediction for office buildings based on chaotic time series was proposed.The method first reconstructed the phase space of the time series of the research object,and judged that whether it had chaotic characteristics.Then the combination model of chaos theory was established and applied in vector regression for training.Finally,Markov chain was used to eliminate the cumulative errors caused by parameter transfer of the combination model,and the final prediction result was obtained.In order to verify the effectiveness of the algorithm,the energy consumption monitoring data of an office building in Xi’an was taken as an example for analysis.The proposed method was compared with other prediction methods,such as nonlinear autoregressive neural network and support vector regression.The experimental results show that the prediction accuracy of the chaotic time series combination model modified by Markov was significantly improved,the prediction result was better than those of other models and more consistent with the change law of energy consumption of office buildings,providing effective data support for energy conservation optimization.

关 键 词:办公建筑能耗 混沌时间序列 预测算法 马尔科夫链 

分 类 号:TU831[建筑科学—供热、供燃气、通风及空调工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象