基于改进SSD的道路交通标志检测  被引量:2

Road Traffic Sign Detection Based on Improved SSD

在线阅读下载全文

作  者:黄桥 胡绍林 张彩霞[1] HUANG Qiao;HU Shaolin;ZHANG Caixia(School of Mechatronic Engineering and Automation,Foshan University,Foshan 528000,China;School of Automation,Guangdong University of Petrochemical Technology,Maoming 525000,China)

机构地区:[1]佛山科学技术学院机电工程与自动化学院,广东佛山528000 [2]广东石油化工学院自动化学院,广东茂名525000

出  处:《计算机测量与控制》2021年第10期60-65,共6页Computer Measurement &Control

基  金:国家自然科学基金(61973094);广东省基础与应用基础研究基金粤港澳应用数学中心项目(2020B151531003)。

摘  要:针对复杂环境下交通标志检测精度低的问题,设计了一种检测精度更高的目标检测算法,对SSD深度学习目标检测算法进行了优化改进;将深度特征表征能力较强的Resnet50网络模型融入于SSD算法中;采用K-means++聚类算法确定SSD中先验框的尺寸,提高交通标志的检测率;分别利用SSD模型和改进的SSD模型做检测对比实验,结果表明,改进算法对各类型交通标志的检测精度比原SSD算法更高;改进的SSD方法对交通标志进行检测能取得较好效果,弥补了原算法的不足。Aiming at the problem of low detection accuracy of traffic signs in complex environments,a target detection algorithm with higher detection accuracy is designed,and the SSD deep learning target detection algorithm is optimized and improved.Incorporate the Resnet50 network model,which has strong deep feature characterization capabilities,into the SSD algorithm.The K-means++clustering algorithm is used to determine the size of a priori box in the SSD to improve the detection rate of traffic signs.The SSD model and the improved SSD model were used to do detection comparison experiments.The results show that the improved algorithm has higher detection accuracy for various types of traffic signs than the original SSD algorithm.The improved SSD method can achieve better results in the detection of traffic signs,which makes up for the deficiencies of the original algorithm.

关 键 词:交通标志 无人驾驶 SSD算法 K-means++聚类 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象