基于VMD-ISD的天然气管道泄漏信号去噪研究  被引量:7

Research on denoising of leakage signal of natural gas pipeline based on VMD-ISD method

在线阅读下载全文

作  者:王冬梅[1] 肖超利 路敬祎[1,2] WANG Dongmei;XIAO Chaoli;LU Jingyi(School of Electrical and Information Engineering,Northeast Petroleum University,Daqing 163318,China;Key Laboratory of Networked and Intelligent Control in Heilongjiang Province,Daqing 163318,China)

机构地区:[1]东北石油大学电气信息工程学院,黑龙江大庆163318 [2]黑龙江省网络化与智能控制重点实验室,黑龙江大庆163318

出  处:《压力容器》2021年第9期46-54,共9页Pressure Vessel Technology

基  金:国家自然科学基金(61873058);中国石油科技创新基金(2018D-5007-0302);东北石油大学青年科学基金项目(2018QNL-33);冶金装备及其控制教育部重点实验室开放基金(MECOF2019B01)。

摘  要:针对变分模态分解分解信号后,有效分量和噪声分量区分存在困难的问题,提出了一种VMD与板仓-斋藤距离结合的算法。首先输入信号通过VMD分解得到K个有限带宽的固有模态函数,计算每个BLIMF与信号概率密度函数之间的ISD,通过评估两个相邻ISD之间的变化选择有效分量,之后利用小波变换去除筛选后噪声分量的高频噪声,最后将有效分量与滤波后的噪声分量进行重构。仿真信号和管道泄漏信号试验表明:该算法能精确地选取有效分量,与其他算法相比取得了更好的去噪效果,并且能够有效应用于天然气管道泄漏信号的去噪处理。In view of the difficulty in distinguishing between the effective component and the noise component after the signal was decomposed by Variational Mode Decomposition(VMD),an algorithm combining VMD and Itakura-Saito Distance(ISD)was proposed.First,The input signal was decomposed through VMD algorithm to obtain K Band-Limited Intrinsic Mode Functions(BLIMFs),calculate the ISD between each BLIMF and the signal probability density function,select the effective component by evaluating the variation between two adjacent ISDs,then wavelet transform was used to remove the high frequency noise of the filtered noise component,and finally the effective component and the filtered noise component were reconstructed.The simulation signal and pipeline leakage signal experiments show that the algorithm can accurately select effective components,achieve better denoising effect than other algorithms,and can be effectively applied to the denoising processing of natural gas pipeline leakage signals.

关 键 词:变分模态分解 板仓-斋藤距离 信号去噪 

分 类 号:TH49[机械工程—机械制造及自动化] TE973.1[石油与天然气工程—石油机械设备]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象