检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张晓[1,2] 刘英 李玉荣[1] 费叶琦[1] Zhang Xiao;Liu Ying;Li Yurong;Fei Yeqi(College of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210037,China;Nanjing Institute of Agricultural Mechanization,Ministry of Agriculture and Rural Affairs,Nanjing 210014,China)
机构地区:[1]南京林业大学机械电子工程学院,南京210037 [2]农业农村部南京农业机械化研究所,南京210014
出 处:《世界林业研究》2021年第5期81-86,共6页World Forestry Research
基 金:江苏省农业科技自主创新资金项目[CX(18)3071];江苏省重点研发计划(产业前瞻与关键核心技术)项目(BE2019112)。
摘 要:经济林作为重要森林资源,其种植面积及产品产量逐年增加。随着科学技术的不断创新与升级,经济林产品加工产业快速发展、衍伸产品日趋增多,急需智能化检测、采收与分选技术与装备。深度融合人工智能技术与经济林产品加工产业,是实现高效化、精准化、智能化发展的重要手段之一。文中综合比较了深度学习技术中不同卷积神经网络算法及模型的优缺点,综述了其在经济林产品检测与分选中的研究进展,并针对研究应用过程中存在的问题提出了进一步深入研究建议,以期为经济林产品检测与分选的智能化发展提供参考。Non-wood forest is an important forest resource, and its planting area and yield have been increasing year by year. With the innovation and upgrading of science and technology, its product processing industry has been developing rapidly, with more augmented product. In this sense, the technologies and equipment for intelligent detection, picking and sorting are urgently needed. The integration of deep integration of artificial intelligence technology with non-wood forest products industry is one of the important means to achieve efficient, precise and intelligent development. This paper comprehensively compares the advantages and disadvantages of different convolution neural network algorithms and models based on deep learning technology, reviews the research progress in detection and sorting of the products from non-wood forest, and puts forward suggestions in view of the problems rising in the process of research and application,with an expectation to provide a reference for the intelligent development of product detection and sorting for non-wood forest.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222