M-矩阵最小特征值下界的估计  

Estimation of Lower Bound of Minimum Eigenvalue of M-matrix

在线阅读下载全文

作  者:李艳艳[1] LI Yanyan(School of Artificial Intelligence,Wenshan University,Wenshan Yunnan 663099,China)

机构地区:[1]文山学院人工智能学院,云南文山663099

出  处:《保山学院学报》2021年第5期42-46,共5页JOURNAL OF BAOSHAN UNIVERSITY

基  金:云南省教育厅科学研究基金项目“两类特殊矩阵特征值界的估计”(项目编号:2021J0759)。

摘  要:研究M-矩阵最小特征值的下界估计问题,在利用两个带有参数的圆盘定理的基础上,结合不等式的适当放缩,首先给出了非负矩阵与M矩阵的逆矩阵的Hadamard积的谱半径的上界,其次给出了M-矩阵最小特征值下界的一些估计式的新的结果,一方面是对该类问题研究的扩充,另一方面,仅与矩阵的元素有关,计算起来较为方便。In this paper,we study the lower bound estimation of the minimum eigenvalue of M-matrix.On the basis of two disk theorems with parameters,appropriate expansion and reduction of combined inequality,the upper bound of spectral radius of Hadamard product of inverse matrix of nonnegative matrix and M matrix is given,and then some estimates of the lower bound of the minimum eigenvalue of M-matrix are given.The new results,on the one hand,extend the study of this kind of problems;on the other hand,they are only related to the elements of matrices,so they are more convenient to calculate.

关 键 词:M-矩阵 最小特征值 不等式 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象