检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许祯毅 林露 XU Zhen-Yi;LIN Lu(College of Tea and Food Science,Wuyi University,Wuyishan 354300,China)
出 处:《食品安全质量检测学报》2021年第19期7611-7616,共6页Journal of Food Safety and Quality
基 金:福建省中青年教师教育科研项目(JAT190793)。
摘 要:目的建立浦城薏米粉水分和还原糖的近红外光谱快速检测模型。方法采集浦城薏米粉样品的近红外光谱图,使用6种不同方法对样品的原始光谱分别进行预处理,在全波段10000-4000 cm^(-1)范围内建立薏米粉偏最小二乘法(partial least squares,PLS)的定量分析模型。结果浦城薏米粉原始光谱在标准正态变换(standard normal variate,SNV)预处理后确定水分含量最佳模型的光谱波段(5944-5590 cm^(-1)),主因子数为7,校正决定系数(determination coefficient of calibration,R_(c)^(2))为 0.9904,均方根误差(root mean square error,RMSEC)为0.0631;在二阶导数法(second derivative,SD)预处理后确定还原糖含量最佳模型的光谱波段(9845-7386 cm^(-1)),主因子数为6,R_(c)^(2)为0.9998,RMSEC为0.0187。在上述条件下,水分和还原糖含量的验证集相关系数(determination coefficient of prediction,R_(p)^(2))分别为 0.9902 和 0.9989,验证均方根(root mean square of prediction error,RMSEP)分别为0.0693和0.0698。结论经验证,该模型可以实现浦城薏米粉中水分和还原糖含量的快速无损检测。Objective To establish a near infrared spectroscopy rapid detection model of moisture and reducing sugar in Pucheng semen coicis powders.Methods The near infrared spectra of Pucheng semen coicis powders samples were collected,and the original spectra of the samples were pretreated by 6 kinds of different methods.The partial least squares(PLS) quantitative analysis model of the Pucheng semen coicis powders were established in the range of 10000-4000 cm^(-1).Results The spectral bands(5944-5590 cm^(-1)) of the optimal model for moisture content were determined after the pretreatment of the original spectrum with standard normal variate(SNV) in Pucheng semen coicis powders.The principal factor number was 7,the correction determination coefficient of calibration(R_(c)^(2))was 0.9904,and the root mean square error(RMSEC) was 0.0631.The spectral bands(9845-7386 cm^(-1)) of the optimal model for reducing sugar content were determined after second derivative(SD) pretreatment.The principal factor number was 6,R_(c)^(2) was 0.9998,and the RMSEC was 0.0187.Under the above conditions,the determination coefficient of prediction(R_(p)^(2)) for moisture and reducing sugar content were 0.9902 and 0.9989,respectively,and the root mean square of prediction error(RMSEP) were 0.0693 and 0.0698,respectively.Conclusion It has been verified that this model can realize rapid and nondestructive detection of moisture and reducing sugar content in Pucheng semen coicis powders.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38