检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张秋莹 黄体仁 ZHANG Qiuying;HUANG Tiren(School of Science,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出 处:《浙江理工大学学报(自然科学版)》2021年第6期835-845,共11页Journal of Zhejiang Sci-Tech University(Natural Sciences)
基 金:国家自然科学基金项目(11401531)。
摘 要:为了研究度量空间中J.Väisälä提出的拟双曲映射是否具有从局部到整体的性质,首先,利用拟双曲映射的性质,证明拟双曲映射的逆映射是一个完全拟双曲映射;其次,为了保证曲线分点的个数为有限数,引入了拟John-ball域的概念,从而建立局部拟双曲度量与整体拟双曲度量之间的关系;最后,在两个适当的拟凸度量空间之间,证明半局部的拟双曲映射是全局的拟双曲映射。In order to study the problem proposed by J.Väisälä,that is,whether quasi-hyperbolic mapping has properties from local to global in the metric space.First of all,we proved that the inverse mapping of the quasi-hyperbolic mapping is a fully quasi-hyperbolic mapping by using the properties of the quasi-hyperbolic mapping.Secondly,the concept of quasi John-ball domain was introduced to ensure that the number of curve points was a finite number.Thereby,we established the relationship between the local quasi-hyperbolic metric and the global quasi-hyperbolic metric.Finally,we proved that the semi-local quasi-hyperbolic mapping is a global quasi-hyperbolic maping between two appropriate quasi-convex metric spaces.
关 键 词:拟共形映射 拟双曲映射 拟双曲度量 拟John-ball域 度量空间
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.39.197