检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈志高 李鹏[3] 肖润秋 黎塔 王文超 CHEN Zhigao;LI Peng;XIAO Runqiu;LI Ta;WANG Wenchao(Key Laboratory of Speech Acoustics and Content Understanding,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China;National Computer Network Emergency Response Technical Team/Coordination Center of China,Beijing 100029,China)
机构地区:[1]中国科学院声学研究所语言声学与内容理解重点实验室,北京100190 [2]中国科学院大学,北京100049 [3]国家计算机网络应急技术处理协调中心,北京100029
出 处:《电子与信息学报》2021年第11期3266-3271,共6页Journal of Electronics & Information Technology
基 金:国家自然科学基金(11590772,11590774,11590770)。
摘 要:近些年来,多种基于卷积神经网络(CNNs)的模型结构表现出越来越强的多尺度特征表达能力,在说话人识别的各项任务中取得了持续的性能提升。然而,目前大多数方法只能利用更深更宽的网络结构来提升性能。该文引入一种更高效的多尺度说话人特征提取框架Res2Net,并对它的模块结构进行了改进。它以一种更细粒化的工作方式,获得多种感受野的组合,从而获得多种不同尺度组合的特征表达。实验表明,该方法在参数量几乎不变的情况下,等错误率(EER)相较ResNet有20%的下降,并且在VoxCeleb,SITW等多种不同录制环境和识别任务中都有稳定的性能提升,证明了该方法的高效性和鲁棒性。改进后的全连接模块结构能更充分利用训练信息,在数据充足和任务复杂时性能提升明显。具体代码可以在https://github.com/czg0326/Res2Net-Speaker-Recognition获得。Recently in speaker recognition tasks,consistent performance gains have been continually achieved by various Convolutional Neural Networks(CNNs),which have shown increasingly stronger multiscale representation abilities.However,most existing methods enhance their strength with more layers and deeper structures.In this paper,a unique multiscale backbone architecture,Res2Net,is introduced for speaker recognition tasks,and its blocks are modified for assessment.This architecture works at a more granular level than most layer-wise networks.It improves the system by combining many equivalent receptive fields,resulting in a combination of different feature scales.The experiments results demonstrate that this architecture steadily achieves a 20%improvement on the Equal Error Rate(EER)over the baseline without additional computational burden.Its effectiveness and robustness are also verified in different environments and tasks,such as VoxCeleb and Speakers In The Wild(SITW).The modified full-connection block can make sure a more sufficient use of information and improves the performance obviously in more complex tasks.The code is available at https://github.com/czg0326/Res2Net-Speaker-Recognition.
分 类 号:TN912.34[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222