检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:殷君君[1] 彭嘉耀 杨健[2] 刘希韫 YIN Junjun;PENG Jiayao;YANG Jian;LIU Xiyun(School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China;Department of Electronic Engineering, Tsinghua University, Beijing 100084, China)
机构地区:[1]北京科技大学计算机与通信工程学院,北京100083 [2]清华大学电子工程系,北京100084
出 处:《雷达科学与技术》2021年第5期499-508,516,共11页Radar Science and Technology
基 金:国家自然科学基金(No.62171023);中央高校基本科研业务费专项资金(No.FRF-GF-20-17B,FRF-IDRY-19-008);北京科技大学顺德研究生院科技创新专项资金(No.BK20BF012,BK19CF010)。
摘 要:合成孔径雷达(Synthetic Aperture Radar,SAR)成像技术已经成为一种高分辨对地观测的重要手段之一,而极化SAR图像地物分类一直是其中的研究热点。基于复Wishart分布的最大似然(Maximum Likelihood,ML)分类器是最经典的极化SAR图像分类算法之一,但由于地物类型的复杂性、区域的不均匀性等原因使得基于像素的ML-Wishart分类器的分类精度不高。针对这个问题,本文提出了一种基于复Wishart分布的局部最大后验概率(Maximum a Posteriori,MAP)竞争方法,该算法通过计算伪先验概率,并在每个像素的局部窗口中实施MAP分类器,可以提高复杂区域图像的分类精度。该文主要研究了4种基于Wishart分布的分类算法,包括经典复Wishart分类算法、混合复Wishart模型、基于马尔科夫随机场(Markov Random Field,MRF)的混合复Wishart模型和基于局部竞争策略的MAP分类算法。在混合模型建模中,不同于以往的对整幅图像进行建模的模型策略,本文采用对单个类别进行混合建模的策略。实验对比分析了上述4个分类器和SVM分类器在C波段RADARSAT-2多时相的全极化SAR农田数据上的分类效果。实验结果表明,所提出的基于局部竞争策略的分类器对数据的分类结果稳定,具有最高的分类精度,基于混合Wishart的MRF模型分类结果次之。Polarimetric synthetic aperture radar(SAR)imaging technology has become one of the important means of high-resolution ground observation.Land cover classification for polarimetric SAR image has always been a hot research topic.The complex Wishart distribution-based maximum likelihood(ML)classifier is one of the most classic polarimetric SAR image classification algorithms.However,due to the complexity of feature types,regional heterogeneity,etc.,the classification accuracy of the pixel-based Wishart classifier is not high.To solve this problem,this paper proposes a local maximum a posteriori(MAP)competition method based on the complex Wishart distribution,which can improve the classification accuracy for images with complex terrains by calculating pseudo-prior probabilities and then implementing MAP classifier in a local window of each pixel.This paper mainly studies 4 classification algorithms based on the Wishart distribution,including the classic complex Wishart classification algorithm,mixed complex Wishart model,Markov random field(MRF)-based mixed complex Wishart model and local competitive Wishart classification algorithm.For mixed model modeling,different from the previous modeling strategy that models the whole image,this paper adopts the strategy to model a single class with a mixture of Wishart distributions.The experiments were conducted to compare and analyze the classification results of the above-mentioned four classifiers and the SVM classifier on C-band RADARSAT-2 multi-temporal fully polarimetric SAR data collected over farmlands.Experimental results show that the proposed classifier based on local competition strategy has stable and superior classification performances for the multi-temporal data sets over the other four methods.
关 键 词:极化合成孔径雷达 复Wishart分布 混合模型 马尔科夫随机场 局部竞争
分 类 号:TN957.52[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200