检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王艺宏 李耀堂[1] Wang Yihong;Li Yaotang(School of Mathematics and Statistics,Yunnan University,Kunming 650091,China)
出 处:《计算数学》2021年第4期444-456,共13页Mathematica Numerica Sinica
基 金:国家自然科学基金(11861077)资助。
摘 要:应用求解算子方程的Ulm方法构造了求解一类矩阵特征值反问题(IEP)的新算法.所给算法避免了文献[Aishima K.,A quadratically convergent algorithm based on matrix equations for inverse eigenvalue problems,Linear Algebra and its Applications,2018,542:310-333]中算法在每次迭代中要求解一个线性方程组的不足,证明了在给定谱数据互不相同的条件下所给算法具有根收敛意义下的二次收敛性.数值实验表明本文所给算法在矩阵阶数较大时计算效果优于上文所给算法.A new algorithm for solving a class of inverse eigenvalue problems of matrices is constructed by using the Ulm method for solving operator equations.The algorithm avoids the shortcomings of solving a system of linear equations in each iteration of the algorithm in[Aishima K.,A quadratically convergent algorithm based on matrix equations for inverse eigenvalue problems,Linear Algebra and its Applications,2018,542:310-333],and it is proved that under the condition that the given spectrum data are different from each other,the algorithm has the quadratic convergence in the sense of root convergence.Numerical experiments show that the algorithm in this paper is better than the algorithm above when the matrix order is large.
关 键 词:矩阵特征值反问题(IEP) Ulm型算法 二次收敛
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7