检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵博 史迎馨[1] ZHAO Bo;SHI Yingxin(Tonghua Normal University,Tonghua Jilin 143001,China)
机构地区:[1]通化师范学院,吉林通化143001
出 处:《激光杂志》2021年第11期185-189,共5页Laser Journal
基 金:吉林省教育厅科研项目(No.JGJX2019D301)。
摘 要:为解决高精密光学元件表面缺陷检测方法存在的精度低、耗时长等的缺陷,提出基于卷积神经网络的高精密光学元件表面缺陷智能检测方法。首先分析当前高精密光学元件表面缺陷检测的研究进展,找到引起检测结果不足的因素,然后采集高精密光学元件表面缺陷图像,提取检测特征,并引入卷积神经网络建立缺陷检测分类器,实现高精密光学元件表面缺陷检测。实验结果表明,所提方法的缺陷检测精度超过93%,缩短了缺陷检测时间,平均单次检测时间降低0.7 s以上。In order to solve the defects of low precision and long time-consuming in the surface defect detection of high-precision optical components,an intelligent detection method based on convolution neural network is proposed.Firstly,the research progress of surface defect detection of high-precision optical components is analyzed,and the factors causing the insufficient detection results are found.Then,the image of surface defects of high-precision optical components is collected,and the detection features are extracted.Finally,the convolution neural network is introduced to establish the defect detection classifier to realize the surface defect detection of high-precision optical components.The experimental results show that the defect detection accuracy of the proposed method is over 93%,the defect detection time is shortened,and the average single detection time is reduced by more than 0.7 s.
关 键 词:高精度光学元件 表面缺陷 卷积神经网络 分类器 检测特征
分 类 号:TN249[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145