基于图像-点云映射的铆钉平齐度高效检测  被引量:7

An Efficient Rivet Flushness Measurement Method Based on Image-to-Point-Cloud Mapping

在线阅读下载全文

作  者:国荣辉 张益华[1] 崔海华[1] 程筱胜[1] 李兰柱[2] Guo Ronghui;Zhang Yihua;Cui Haihua;Cheng Xiaosheng;Li Lanzhu(College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,Jiangsu 210016,China;Institute of Aerospace Materials and Technology,f Beijing 100048,China)

机构地区:[1]南京航空航天大学机电学院,江苏南京210016 [2]航天材料及工艺研究所,北京100048

出  处:《激光与光电子学进展》2021年第20期320-328,共9页Laser & Optoelectronics Progress

基  金:国家重点研发计划(2019YFB1707500,2019YFB2006100);国防基础科研计划(JCKY2018605C002);江苏省自然科学基金(BK20191280)。

摘  要:铆钉平齐度是铆接质量参数中的一项重要指标,但在实际检测中缺少高效、稳定的检测方法。针对铆钉平齐度的检测,本文提出了一种基于图像-点云映射分割策略的平齐度检测方法。首先,为了快速、稳定地提取图像中的铆钉轮廓,本文提出了一种图像噪声轮廓的分割方法,并基于铆钉轮廓像素的邻域特征,总结出轮廓拐点处的三种邻域特征,据此判断轮廓点是否为拐点,依据拐点对噪声轮廓进行分割;然后,基于图像-点云映射策略,将图像中的铆钉特征映射到测量得到的三维点云中,实现铆钉点云区域的快速、稳定分割。实验结果验证了本文所提铆钉平齐度检测方法具有较高的稳定性和检测精度。Rivet flushness is an important indicator of riveting quality parameters;however,efficient and stable methods for actual testing are lacking.We propose a technique for flushness detection based on image-to-point-cloud segmentation algorithm for detecting rivet flushness.First,we propose a separating method of the image noise contour to stably and quickly extract the rivet contour in images.Three neighborhood features at the inflection point of the contour are summarized on the basis of an analysis of the neighborhood features of the rivet contour pixel.According to the neighborhood features,whether the contour point is an inflection point is judged,and the noise contour separation is realized.Second,the rivets features in the image are mapped to the measured three-dimensional point cloud to realize fast and stable segmentation of the rivets after extracting the contours of the rivets in the image.The experiment confirms the excellent stability and accuracy of the rivet flushness detection method proposed in this paper.

关 键 词:图像处理 图像识别 形貌测量 铆钉平齐度 轮廓检测 点云分割 

分 类 号:O439[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象