检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:颜锦 马宏忠[1] 朱昊 张勇 李勇 许洪华 Yan Jin;Ma Hongzhong;Zhu Hao;Zhang Yong;Li Yong;Xu Honghua(School of Energy and Electrical Engineering,Hohai Unwersity,Nanjing 211100,China;Nanjing Power Supply Company,State Grid Jiangsu Electric Power Company,Nanjing 210019,China)
机构地区:[1]河海大学能源与电气学院,南京211100 [2]国网江苏省电力公司南京供电公司,南京210019
出 处:《电测与仪表》2021年第11期74-80,共7页Electrical Measurement & Instrumentation
基 金:国家自然科学基金资助项目(51577050);国网江苏省电力公司重点科技项目(J2020042)。
摘 要:变压器空载合闸的振动信号包含了丰富的机械特征信息,为了实现对变压器绕组松动故障诊断,提出了一种局部均值分解(LMD)边际谱能量熵与烟花算法优化支持向量机(FWA-SVM)的方法。通过LMD提取若干反映变压器合闸过程绕组状态信息的乘积函数(Product Function, PF)分量;依据各PF分量相关系数与能量分布,将前6阶PF分量进行希尔伯特变换,并求取对变压器绕组状态变化敏感的边际谱能量熵作为特征向量;将特征向量输入到烟花算法(FWA)优化的支持向量机(SVM)分类器,实现变压器绕组轻微松动故障早期预警。实验结果表明:基于LMD边际谱能量熵能准确反映故障特征,FWA-SVM诊断方法在少量样本情况下仍有较高的故障辨识度。The vibration signal of transformer no-load closing contains abundant mechanical characteristic information. In order to effectively realize the fault diagnosis of transformer winding looseness, a fault feature extraction method that combines local mean decomposition(LMD) marginal spectrum energy entropy and fire-works algorithm-support vector machine(FWA-SVM) is proposed in this paper. Several product function(PF) components that reflect the mechanical state information of operating process are extracted by LMD. The top 6 th order PF components are transformed by Hilbert transform based on the energy distribution and correlation coefficients of PF components and their marginal spectrum energy entropy are calculated as the feature vectors. The fire-works algorithm(FWA) is used to optimize the support vector machine(SVM) classifier to realize the early warning of transformer winding looseness. The experimental results show that the fault features based on LMD-Hilbert marginal spectrum energy entropy extraction can accurately reflect the fault characteristics, and the FWA-SVM diagnosis method has a good identification effect on the case of a small number of samples.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229