检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王甘楠 田昕 魏国亮 周军[1] Wang Gannan;Tian Xin;Wei Guoliang;Zhou Jun(School of Optical-Electrical&Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093 [2]上海理工大学理学院,上海200093
出 处:《计算机应用研究》2021年第12期3725-3729,共5页Application Research of Computers
基 金:国家自然科学基金资助项目(61873169)。
摘 要:针对室内空间内的人员定位困难问题进行了研究,提出了一种基于Wi-Fi指纹法和循环神经网络(recurrent neural network,RNN)的多传感器融合室内定位算法。该算法将智能手机接收到的路由器信号强度作为时间序列输入RNN,通过RNN获得对行人精度较高的定位,与此同时获取智能手机中惯性测量单元提供的位置信息。随后,通过粒子滤波算法对两种定位方式的定位结果进行融合。在实际场景下设计了多组实验进行对比。实验结果表明,该算法定位平均误差为0.9 m,优于加权K近邻等算法,可以为行人提供实时的定位。Aiming at the difficulty of locating people in indoor space,this paper proposed a multi-sensor fusion indoor location algorithm based on Wi-Fi fingerprint method and RNN.In this algorithm,it input the router signal strength received by the smart phone into RNN as time series to obtain the positioning of pedestrians with high accuracy through RNN.At the same time,it obtained the position information provided by the inertial measurement unit in the smart phone.Then,it fused the results of the two localization methods by particle filter algorithm.It designed several groups of experiments for comparison in the actual scene.Experimental results show that the average error of the proposed algorithm is 0.9 m,which is better than the weighted K-nearest neighbor algorithm and some other algorithms,and can provide real-time positioning for pedestrians.
关 键 词:室内定位 循环神经网络 粒子滤波 Wi-Fi指纹定位技术
分 类 号:TP29[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30