检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李亮 范瑾 闫林 张宓 王鹏飞[3] 赵小军[4] 肖海滨 LI Liang;FAN Jin;YAN Lin;ZHANG Mi;WANG Pengfei;ZHAO Xiaojun;XIAO Haibin(Nuclear and Radiation Safety Center MEE,Beijing 102400,China;China Nuclear Power Engineering Co.,Ltd.,Beijing 100840,China;College of Nuclear Science and Technology,Xi'an Jiaotong University,Xi'an 710049,China;Department of Electrical Engineering,North China Electric Power University,Baoding 071003,China;Baoding Tianwei Baobian Electric Co.,Ltd.,Baoding 071000,China)
机构地区:[1]生态环境部核与辐射安全中心,北京102400 [2]中国核电工程有限公司,北京100840 [3]西安交通大学核科学与技术学院,陕西西安710049 [4]华北电力大学电力工程系,河北保定071003 [5]保定天威保变电气股份有限公司,河北保定071000
出 处:《中国电力》2021年第12期150-155,共6页Electric Power
基 金:河北省自然科学基金资助项目(特高压并联电抗器的电磁-力-振动耦合机理与本体降噪关键技术研究,E2017502061)。
摘 要:针对变压器不平衡数据集对变压器故障诊断模型产生的影响,提出了基于混合采样和支持向量机(support vector machines, SVM)的变压器故障诊断方法,利用合成少数类过采样技术(synthetic minority oversampling technique, SMOTE)和基于最近邻规则的欠采样方法,分别对变压器故障数据和正常数据进行采样,再利用混合采样得到的平衡数据训练基于支持向量机变压器故障诊断模型。通过测试集对比不平衡数据和平衡数据下基于SVM的变压器故障诊断模型的性能。最后分析了采样率对于变压器故障诊断模型诊断准确率的影响。实验结果表明,该方法可以有效降低不平衡数据对诊断模型的影响,提高变压器故障诊断模型的准确率。Aiming at the impact of transformer imbalanced data set on transformer fault diagnosis model.A transformer fault diagnosis method based on hybrid sampling and support vector machines(SVM)is proposed.It uses synthetic minority oversampling technique(SMOTE)and under sampling method based on nearest neighbor rules to underestimate transformer fault data and normal data,respectively.Sampling and oversampling,and then using the balanced data obtained by hybrid sampling training based on support vector machines transformer fault diagnosis model.The performance of the SVM-based transformer fault diagnosis model is compared through the test set under imbalanced data and balanced data.Finally,the influence of sampling rate on the diagnostic accuracy of transformer fault diagnosis model is analyzed.Experimental results show that this method can effectively reduce the impact of imbalanced data on the diagnostic model and improve the diagnostic accuracy of the transformer fault diagnostic model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.20