基于多尺度融合方法的无人机对地车辆目标检测算法研究  被引量:9

Research on Unmanned Aerial Vehicle to Ground Vehicle Target Detection Algorithm Based on Multiscale Fusion Method

在线阅读下载全文

作  者:张立国[1] 蒋轶轩 田广军[1] ZHANG Li-guo;JIANG Yi-xuan;TIAN Guang-jun(School of Electrical Engineering,Yanshan University,Qinhuangdao,Hebei 066004,China)

机构地区:[1]燕山大学电气工程学院,河北秦皇岛066004

出  处:《计量学报》2021年第11期1436-1442,共7页Acta Metrologica Sinica

摘  要:由于飞行高度等原因,无人机图像在实际使用中目标尺寸普遍较小、特征信息不明显,使用现有的算法对其进行目标检测存在困难。因此,提出了基于多尺度融合的图像多目标检测方法,使用Faster R-CNN为基础框架,将不同层次的特征信息进行融合,再结合上下文信息,实现了对无人机图像小目标检测。使用Vis Drone2019数据集对地面车辆进行目标检查,实验证明:无人机对地面车辆目标的检测达到了较好的结果,所使用算法的精度达到88%,与其它算法相比提升了3.8%以上。With the development of drone technology,the use of drone images for ground vehicle target recognition is of great significance both in rescue and disaster relief and in traffic management.However,in actual use,due to the flight height and other reasons,the target in the image is generally small in size and the feature information is not obvious.It is difficult to detect the target using existing algorithms.Therefore,an image multi-target detection method based on multiscale fusion is proposed.Using Faster R-CNN as the basic framework,the feature information of different levels is fused,and the context information is combined to realize the detection of small targets in unmanned aerial vehicle images.The Vis Drone dataset is used to perform ground inspection on ground vehicles.Experiments have shown that the detection of ground vehicle targets by drones has achieved good results.The accuracy of the algorithm used has reached 88%,which is an increase of 3.8% compared with other algorithms the above.

关 键 词:计量学 对地车辆目标检测 无人机图像 小目标检测 多尺度融合 上下文信息 

分 类 号:TB96[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象