检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈嘉懿 王宝 刘英超 史勇红 宋志坚 CHEN Jia-yi;WANG Bao;LIU Ying-chao;SHI Yong-hong;SONG Zhi-jian(Digital Medical Research Center,School of Basic Medical Sciences,Fudan University,Shanghai 200032,China;Shanghai Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention,Shanghai 200032,China;Department of Radiology,Qilu Hospital Affiliated to Shandong University,Ji'nan 250012,China;Department of Neurosurgery,Shandong Provincial Hospital Affiliated to Shandong First Medical University,Ji'nan 250021,China)
机构地区:[1]复旦大学基础医学院数字医学研究中心,上海200032 [2]上海市医学图像处理与计算机辅助手术重点实验室,上海200032 [3]山东大学齐鲁医院放射科,济南250012 [4]山东第一医科大学附属省立医院神经外科,济南250021
出 处:《解剖学报》2021年第6期933-939,共7页Acta Anatomica Sinica
基 金:国家自然科学基金(82072021);山东省泰山学者基金(tsqn20161070)。
摘 要:目的应用临床常规3T磁共振T1、T2和液体衰减反转恢复(FLAIR)成像分析胶质瘤和单发性脑转移瘤的影像组学特征差异,探讨肿瘤区域不同方向以不同角度构建的纹理特征对区别两种肿瘤的意义,寻找一种可行的胶质瘤和单发性脑转移瘤高精度分类方法。方法 43例胶质瘤患者和年龄、性别匹配的45例单发性脑转移瘤患者,从肿瘤区域轴状面、冠状面和矢状面方向的每1层构建不同角度的影像组学灰度共生矩阵,计算相应的纹理空间关系特征(包括对比度、相关性、能量和同质性);使用Wilcoxon秩和检验选择特征并降低冗余;所选特征经SVM线性核分类器分类,实现两种肿瘤的诊断。结果在分类胶质瘤和单发性脑转移瘤时,多模态多方向组合特征的精确性、召回率、F1分值和准确性分别是0.8857、0.9114、0.8944和0.8922;该组合特征在SVM线性核分类器下的受试者工作特征曲线下面积为0.9602;并将45例单发性脑转移瘤患者中的40例正确分类;43例胶质瘤患者中的39例正确分类。结论肿瘤区域的多模态多方向组合特征经SVM线性核分类器分类,可以鉴别胶质瘤和单发性脑转移瘤,这可作为第2意见,有效协助医生做出诊断。Objective To analyze the difference of radiomics features between solitary brain metastasis and glioma using routine 3 T T1,T2 and fluid attenuation inversion recovery( FLAIR) magnetic resonance imaging,to explore the significance of texture features constructed in different directions and angles in tumor regions in distinguishing the two kinds of tumors,and to explore a feasible method for high-precision classification of solitary brain metastases and gliomas.Methods Given the multimodal images of 43 patients with glioma and 45 age-and sex-matched patients with solitary brain metastasis,the gray level co-occurrence matrices of different angles of each slice were constructed from the transverse,coronal and sagittal directions of the tumor regions of these images,and the texture spatial relationship features( including contrast,correlation,energy and homogeneity) were calculated. Wilcoxon rank sum test was used to eliminate redundant features and select features with strong distinguishing ability. Finally,SVM linear kernel classifier was used to classify the selected features to achieve the identification of the two kinds of tumors. Results When classifying glioma and solitary brain metastasis,the precision,recall,F1 score and accuracy of multimodal and multidirectional combination features were 0. 8857,0. 9114,0. 8944 and 0. 8922,respectively. The area under the receiver operating characteristic curve obtained by linear kernel SVM classifier was 0. 9602. Totally 40 of the 45 patients with solitary brain metastases were correctly classified,and 39 of the 43 gliomas were correctly classified. Conclusion The multimodal and multi-directional combination features of tumor areas can be classified by linear kernel SVM classifier to distinguish gliomas from solitary brain metastases,which can be used as a second opinion to effectively assist doctors in making diagnosis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249