融合卷积神经网络和相关滤波的焊缝自动跟踪  被引量:13

Automatic Weld Tracking Based on Convolution Neural Network and Correlation Filter

在线阅读下载全文

作  者:杨国威 周楠 杨敏 张永帅 王以忠[1] Yang Guowei;Zhou Nan;Yang Min;Zhang Yongshuai;Wang Yizhong(College of Electronic Information and Automation,Tianjin University of Science&Technology,Tianjin300222 China)

机构地区:[1]天津科技大学电子信息与自动化学院,天津300222

出  处:《中国激光》2021年第22期105-115,共11页Chinese Journal of Lasers

基  金:国家自然科学基金(51805370);天津市自然科学基金(20JCQNJC00120)。

摘  要:自动焊接时,为提高焊缝坡口关键位置的检测精度和抗干扰能力,基于卷积神经网络设计了焊缝特征点提取网络。该网络通过卷积、池化操作对图像中焊缝激光线的位置信息和拐点特征信息进行提取;引入先验框,将焊缝特征点检测从全局定位转为局部定位;识别定位模块通过结合特征点位置预测与特征点存在置信度预测,抑制了噪声干扰。为保证实际的焊接效率,融合相关滤波算法完成了焊缝关键位置的自动追踪。核相关滤波通过快速傅里叶变换降低了算法的时间复杂度,引入循环矩阵循环移位样本进行充分训练,保证了跟踪速度和精度。实验结果表明,焊缝特征点定位的均方根误差为0.207 mm,最大定位误差为0.71 mm。本文所提算法的定位精度较高,而且适用性和抗噪声干扰能力较强,能够满足焊缝自动跟踪系统的要求。Objective Weld tracking based on laser vision is widely used in automatic welding due to its noncontact,high precision,and other advantages.It is critical to obtain precise key position information such as the weld’s centerline,width,and groove edge.However,in the field,there will be welds with different groove forms,and the weld images will be disturbed to varying degrees by noise such as arc light,splash,and smoke.The traditional image processing methods cannot fully adapt to weld tracking in various complex environments.To overcome the noise interference in a complex welding environment and improve the accuracy and adaptability of weld tracking,a feature point extraction network based on a convolution neural network to locate weld feature points is proposed.To ensure accuracy and robustness,the network makes full use of its strong learning ability.It is not necessary to use the proposed convolution neural network to extract weld feature points in each weld image to improve welding efficiency in actual welding.The stable and predictable change of weld position can be used for weld tracking.Therefore,a reliable and fast automatic weld tracking can be realized by using the network to locate the feature point and fusing a kernel correlation filter(KCF)algorithm.Methods To overcome noise interferences and accurately locate the groove edge of the weld,a weld feature point extraction network with the powerful feature extraction ability and learning ability of the convolution network is proposed.The network’s convolution and pooling operations can extract the position and edge contour of the laser line in the weld image.A prior region generation module is used in the network to divide the input weld image into several prior regions.It transfers the key position detection of the weld from the entire welding image to the prior regions,reducing the difficulty of extracting the weld’s key positions and improving positioning accuracy.The recognition and location module in the network can combine the prediction of the

关 键 词:图像处理 深度学习 焊缝检测 焊缝跟踪 相关滤波 

分 类 号:TG409[金属学及工艺—焊接]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象