检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭建国[1] 杨胜江[1] 鲁宁波 王国庆[2] GUO Jian-guo;YANG Sheng-jiang;LU Ning-bo;WANG Guo-qing(Northwestern Polytechnical University,Institute of Precision Guidance and Control,Shaanxi Xi’an 710072,China;China Academy of Launch Vehicle Technology,Department of Research and Development,Beijing 100076,China)
机构地区:[1]西北工业大学精确制导与控制研究所,陕西西安710072 [2]中国运载火箭技术研究院研发部,北京100076
出 处:《现代防御技术》2021年第6期1-8,共8页Modern Defence Technology
基 金:国家自然科学基金(61973254)。
摘 要:针对高超声速飞行器动态模型中存在的非匹配不确定性,提出了一种基于Lyapunov方程的滑模变结构控制方法。首先建立了具有非匹配干扰的面向跟踪控制的系统模型,通过引入非线性扰动观测器来估计非匹配干扰;其次提出了由速度子系统和高度子系统的扰动估计值构成的新的滑模面,并导出了针对非匹配干扰的滑模控制器。最后基于Lyapunov方程的稳定性判据出发证明了系统的稳定性,从中得到了2个子系统的跟踪误差精度和非匹配干扰的估计误差之间的关系。仿真结果表明该方法的正确性。A sliding mode variable structure control method based on the Lyapunov equation is proposed for the non-matching uncertainty in the dynamic model of hypersonic vehicles.A tracking-oriented control system model with non-matching disturbances is established to estimate non-matching disturbances by introducing a nonlinear perturbation observer.A new sliding-mode surface consisting of the perturbation estimates of the velocity subsystem and the altitude subsystem is proposed,and a sliding-mode controller is derived for the non-matching disturbances.The stability of the system is proved based on the stability criterion starting from the Lyapunov equation,from which the relationship between the tracking error accuracy of the two subsystems and the estimation error of the unmatched disturbance is obtained.The simulation results show the correctness of the method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7